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Abstract

Background: Sunitinib malate (SUTENT®) is an oral, multitargeted tyrosine kinase inhibitor,
approved multinationally for the treatment of advanced RCC and of imatinib-resistant or —
intolerant GIST. The purpose of this study was to explore potential biomarkers of sunitinib
pharmacological activity via serial assessment of plasma levels of four soluble proteins from patients
in a phase Il study of advanced RCC: VEGF, soluble VEGFR-2 (sVEGFR-2), placenta growth factor
(PIGF), and a novel soluble variant of VEGFR-3 (sVEGFR-3).

Methods: Sunitinib was administered at 50 mg/day on a 4/2 schedule (4 weeks on treatment, 2
weeks off treatment) to 63 patients with metastatic RCC after failure of first-line cytokine therapy.
Predose plasma samples were collected on days | and 28 of each cycle and analyzed via ELISA.

Results: At the end of cycle |, VEGF and PIGF levels increased >3-fold (relative to baseline) in 24/
54 (44%) and 22/55 (40%) cases, respectively (P < 0.001). sVEGFR-2 levels decreased > 30% in 50/
55 (91%) cases and > 20% in all cases (P < 0.001) during cycle I, while sVEGFR-3 levels were
decreased > 30% in 48 of 55 cases (87%), and > 20% in all but 2 cases. These levels tended to return
to near-baseline after 2 weeks off treatment, indicating that these effects were dependent on drug
exposure. Overall, significantly larger changes in VEGF, sVEGFR-2, and sVEGFR-3 levels were
observed in patients exhibiting objective tumor response compared with those exhibiting stable
disease or disease progression (P < 0.05 for each analyte; analysis not done for PIGF).

Conclusion: Sunitinib treatment in advanced RCC patients leads to modulation of plasma levels
of circulating proteins involved in VEGF signaling, including soluble forms of two VEGF receptors.
This panel of proteins may be of value as biomarkers of the pharmacological and clinical activity of
sunitinib in RCC, and of angiogenic processes in cancer and other diseases.
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Background

Sunitinib malate (SUTENT®, SU11248; Pfizer Inc; New
York, USA) is an oral multitargeted tyrosine kinase inhib-
itor with antiangiogenic and antitumor activity in clinical
development for a variety of advanced solid malignancies.
It is a potent and selective inhibitor of Class III and Class
V split kinase domain receptor tyrosine kinases (RTKs),
including VEGFR-1, -2, and -3; PDGFR-a and -; stem cell
factor receptor (KIT); Fms-like tyrosine kinase-3 receptor
(FLT3); the RTK encoded by the ret proto-oncogene
(RET); and the receptor for M-CSF (CSF-1R) [1-8] each of
which have been implicated in tumor cell growth and sur-
vival either directly via tumor cell signaling, or, indirectly,
via tumor-dependent angiogenesis [9-13].

Sunitinib has been studied in two, independent, open-
label phase II studies of metastatic renal cell carcinoma
(RCC) [14,15], a highly vascularized disease that accounts
for more than 30,000 new cases of cancer and more than
12,000 deaths in the United States each year [16]. In both
studies, patients received repeated 6-week cycles of treat-
ment, each comprising sunitinib 50 mg/day administered
using a 4/2 schedule (4 weeks on treatment, 2 weeks off
treatment), and all patients had prior treatment with at
least one cytokine-based therapy. In the first study, in
which 63 patients were treated with sunitinib, 40%
achieved a partial response (PR), as defined by Response
Evaluation Criteria in Solid Tumors (RECIST), and 27%
demonstrated stable disease (SD) >3 months; the median
time to tumor progression was 8.7 months [14]. In the
second phase II study, in which 106 patients were treated
with sunitinib (1 patient was excluded from the efficacy
analysis), the overall investigator-assessed objective
response rate was 44%; one patient (1%) achieved com-
plete response and 45 patients (43%) a partial response
[15]. Based on these findings, sunitinib received acceler-
ated approval in 2006 from the US FDA for the treatment
of advanced RCC. In addition, the European Medicines
Agency (EMEA) granted conditional approval for the
treatment of advanced and/or metastatic RCC after failure
of interferon alfa or interleukin-2 therapy.

With the advent of molecularly targeted therapies and the
parallel development of comprehensive integrated staging
systems for metastatic RCC, the introduction of molecular
tumor markers has the potential to considerably improve
attempts to individualize patient prognostication and
treatment strategies [17]. The purpose of this study was to
explore potential biomarkers of sunitinib pharmacologi-
cal effect and biologic activity via assessment of plasma
levels of four soluble proteins, initially identified in
sunitinib phase I studies as potential biomarkers. They
include VEGF-A, soluble VEGFR-2 (sVEGFR-2), and pla-
centa growth factor (PIGF; a member of the VEGF family
and a specific ligand of VEGFR-1 [18]), all of which are
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components of the angiogenesis system [10,11,19] and
which have previously been reported as circulating factors
that are modulated in cancer patients treated with
sunitinib [14,20]. Another candidate biomarker evaluated
in this study is a novel soluble variant of VEGFR-3 (solu-
ble VEGFR-3; sVEGFR-3). VEGFR-3 is thought to primarily
function in lymphangiogenesis and may play a role in
tumor cell dissemination to the lymphatic system [21,22].
Herein, we describe the biomarker results and explore
relationships with drug exposure and clinical response in
the first phase II study of patients with metastatic RCC
treated with sunitinib.

Methods

Patients

Sixty-three patients with metastatic RCC and prior treat-
ment with first-line cytokine-based therapy (IFN-a, IL-2)
were enrolled in this phase II study. The primary endpoint
of the trial was objective response rate, as summarized
above [14]. (For a complete listing of eligibility criteria,
please see prior publication.)

The study was approved by the institutional review board
at each of the seven participating centers and was per-
formed in accordance with the Declaration of Helsinki
and Good Clinical Practice Guidelines.

Study Design and Treatment

The starting dose of sunitinib was 50 mg/day, adminis-
tered using the 4/2 schedule. It was self-administered
orally once daily without regard to meals. Intrapatient
dose escalation in increments of 12.5 mg/day (up to 75
mg/day) was permitted in the absence of treatment-
related toxicity. Dose reduction for toxicity was allowed to
37.5 mg/day and then to 25 mg/day, depending on sever-
ity of toxicity.

Assessment of Sunitinib Levels and Biomarkers

Plasma concentrations of sunitinib and its active metabo-
lite, SU12662, were determined on days 1 and 28 of cycles
1 to 4. Plasma concentrations of both were determined
predose by a liquid chromatography/mass spectrometry
method at BASi (West Lafayette, IN), with a lower limit of
detection of 0.1 ng/mL [23].

Predose plasma samples were collected on days 1 and 28
of each cycle for assessment of soluble proteins that may
be correlates of angiogenic activity and/or pharmacody-
namic inhibition of VEGF receptor-mediated signaling
[24-26]. Each of the soluble proteins was analyzed with
enzyme-linked immunosorbent assay (ELISA) kits (all
manufactured by R&D Systems, Minneapolis, MN). The
(VEGF)-A ELISA assay measures the VEGF-A165 and
VEGF-A121 isoforms. The PIGF assay primarily measures
PIGF-1. sVEGFR-2 was quantified with an ELISA that
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measures the extracellular (soluble) domain of VEGFR-2
[27]. Similarly, an ELISA component kit that measures the
extracellular (soluble) domain of VEGFR-3 was
employed. Both the sVEGFR-2 and sVEGFR-3 assays are
calibrated against recombinant proteins consisting of the
full-length extracellular domain of the respective recep-
tors. No cross-reactivity or interference is detected
between the two receptors in the ELISA assays. Though the
structural details of sVEGFR-2 and sVEGFR-3 remain to be
established, plasma-derived sVEGFR-2 has been reported
to be heavily glycosylated and to have a molecular weight
of ~90 kDa when de-glycosylated; the size is similar to
that or insect-derived recombinant sVEGFR-2, implying
that endogenous sVEGFR-2 may be similar in structure to
recombinant versions of the VEGFR-2 extraceullar
domain [27]. All ELISA assays were run under Good Lab-
oratory Practice conditions, and performance specifica-
tions of each ELISA were validated for their intended
purpose, as per established guidelines [28].

Data Analysis

Protein plasma concentration data and correlations with
drug levels and response data were analyzed with Micro-
soft Excel, S-Plus Version 6.2, and Spotfire Decision Site;
comparison results from Student's t-test or Wilcoxon rank
sum tests with P < 0.05 were considered statistically signif-
icant. All P-values reported are results of two-sided tests.
In hierarchical clustering analysis, all values were log2-
transformed prior to unsupervised two-dimensional clus-
tering (Spotfire Decision Site).

Results

Clinical Results and Sunitinib Pharmacokinetics
Sixty-three patients were treated with sunitinib. The
median age was 60 years, and 55 patients (87%) had
clear-cell histology [14]. The objective response rate, the
primary endpoint of the study, was 40% (For a full listing
of baseline characteristics and summary of efficacy and
safety findings, please see prior publication.)

Patients achieved and maintained steady-state trough
plasma concentrations (Cyygh) Of sunitinib and its active
metabolite throughout the dosing periods for multiple
cycles. The median total drug Cg, (sunitinib and
SU12662 combined) at steady state in all patients was
84.3 ng/mL [14], which is greater than the 50 ng/mL
shown to inhibit target RTKs in preclinical models [3].
Drug concentrations increased during the on-drug periods
and decreased during the off periods, with no accumula-
tion observed, across dosing cycles.

Plasma Levels of VEGF, sVEGFR-2, and PIGF: Baseline
Levels and Changes During Sunitinib Treatment
Significant changes (p < 0.0001) in the mean plasma lev-
els of VEGF, sVEGFR-2 and PIGF were noted within each
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dose cycle, as reported in brief elsewhere [14] and as sum-
marized in Table 1 for the first treatment cycle. Baseline
(cycle 1, day 1) values for VEGF and sVEGFR-2 were in the
assay detection range for all cases; however, in the case of
PIGF, only 17 baseline readings (~27%) were measured as
above the lower limit of quantitation for the PIGF ELISA
assay (at day 28 of cycle 1, 53 of 56 (~95%) cases were in
the detectable range). Due to the prevalence of readings
below the level of quantitation for PIGF, for all subse-
quent data analysis such readings were assigned a value
equal to the lowest detectable concentration standard
(26.2 pg/mL). At the end of the first cycle, VEGF and PIGF
levels increased greater than 3-fold relative to baseline
(the cycle 1, day 1 timepoint, which is prior to the first
sunitinib dose) in 24 of 54 cases (44%) and 22 of 55 cases
(40%), respectively. Levels of sSVEGFR-2 were decreased by
at least 30% in 50 of 55 cases (91%) during the same time
frame, and by at least 20% in all cases. For each of these
markers, levels tended to return to near-baseline after the
2-week off-treatment period between cycles. This suggests
a drug-dependent effect, as illustrated by the patterns of
mean and median ratios to baseline as shown for VEGF
and sVEGFR-2 (Figure 1a and 1b). Similarly, the results
for PIGF clearly indicate a pharmacodynamic effect of
sunitinib treatment (Figure 1c), and suggest that PIGF is a
biomarker of interest for this agent; however, since most
baseline samples (and day 1 samples from subsequent
cycles) were below the lower limit of quantification, pre-
cise calculation of ratios to baseline was not feasible in
most cases.

Changes in Plasma Levels of sVEGFR-3

In addition to the three angiogenesis-related proteins
described above, we also assessed the plasma levels of
SVEGFR-3, an apparent circulating variant of VEGFR-3.
Assessment of sSVEGFR-3 via ELISA was initially selected
based on a result of proteomic screening of plasma sam-
ples, using an antibody microarray-based multiplex assay
[29] in which sVEGFR-3 was identified as a potential

Table I: Comparison of levels of soluble protein biomarkers
(VEGF, sVEGFR-2, and PIGF) at baseline and at the end of the
first treatment cycle (day 28 of cycle 1) in RCC patients. Only
readings that were in the assay detection range are included in
this table.

Mean Median Range (pg/mL)
VEGF
Cycle |, Day | (n =62) 86.9 67.0 9.7 - 3555
Cycle |, Day 28 (n = 55) 278.7 193.3 26.1 —973.9
sVEGFR-2
Cycle |, Day | (n =62) 96103 95545 6390 — 14496.5
Cycle |, Day 28 (n = 57) 5303.9 5157.0 1948 — 1 1241.5
PIGF*
Cycle |, Day | (n=17) 41.7 35.6 26.7 - 95.9
Cycle |, Day 28 (n = 53) 111.8 77.9 29.0 - 483.3

Page 3 of 11

(page number not for citation purposes)



Journal of Translational Medicine 2007, 5:32

a) VEGF
115 n —
VEGF Mean (SEM) Ratios to Baseline
104 —=— VEGF Median Ratios to Baseline
94
2
= 81
A
Q
a 74
)
S
5
w 54
¥
s 4]
7
8 34
o
24
14
0 T T T T T T T T T T T 1
C1D1 C1D28 C2D1 C2D28 C3D1 C3D28 C4D1 C4D28 Ce6D1 Ce6D28 C8D1 C8D28
(54) (52) (51) (44) (44) (40) (40) (34) (32) (24) (19)
b) sVEGFR-2
1.2 9
—+— sVEGFR-2 Mean (SEM) Ratios to Baseline
SVEGFR-2 Median Ratios to Baseline
1.0 A

0.

Plasma sVEGFR-2 Ratios to Baseline

0.2 q

0.0

c) PIG
0-

Plasma PIGF Ratio to Baseline

Figure |

Mean and median ratios to baseline for VEGF (panel a), sVEGFR-2 (panel b), and PIGF (panel c) at each time-
point in various treatment cycles (SEM = Standard Error of the Mean). Mean and median ratios to baseline for VEGF

0.8 q

o

0.4 1

\/\v\/\/\A

F

C1D1 C1D28 C2D1 C2D28 C3D1 C3D28 C4D1 C4D28 Ce6D1 C6D28 C8D1 C8D28
(55) (52) (51) (44) (44) (40) (40) (33) (32) (23) (19)

—+—PIGF Mean (SEM) Ratios to Baseline
PIGF Median Ratios to Baseline

A/\NW

CeD28 C8D1 C8D28
(32) (23) (19)

C1D28 C2D1 (C2D28 C3D1
(55)  (52) (51)  (44)

C4D28 C6D1
(40) (33)

C3D28 C4D1
(44) (40)

C1D1

http://www.translational-medicine.com/content/5/1/32

(panel a), sVEGFR-2 (panel b), and PIGF (panel c) at each timepoint in various treatment cycles (SEM = Standard Error of the
Mean). Soluble protein plasma level ratios relative to baseline (cycle I, day ) are plotted as a series of timepoints, with the
baseline values normalized to |. C(N)D(N) = cycle number, day number (e.g., C1D28 = cycle |, day 28). The number of values
available is listed in parentheses below each time point. The rise and fall of these proteins in accordance with the 4 weeks-on/
2 weeks-off sunitinib dosing regimen is indicative of a drug-dependent effect.
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Table 2: Comparison of sVEGFR-3 plasma levels at baseline and
at the end of the first treatment cycle (day 28 of cycle |) in RCC
patients. Only readings that were in the assay detection range
are included in this table.

Mean Median Range (pg/mL)
sVEGFR-3
Cycle |, Day | (n = 62) 711452 70700.0 23300 - 129200
Cycle |, Day 28 (n=44) 395205 37100.0 21500 — 64600

pharmacodynamic marker of sunitinib activity [8]. Con-
firmatory ELISA assessments revealed that significant
changes (p < 0.0001) in the mean plasma levels of
SVEGFR-3 were noted within each dose cycle (Table 2).
Baseline values for sVEGFR-3 were in the assay detection
range for all cases; however, at day 28 of the first cycle,
SVEGFR-3 levels were reduced to less that the lower limit
of quantitation in 12 of 56 cases (21%). Readings below
the quantitation limit were frequently observed at day 28

http://www.translational-medicine.com/content/5/1/32

of subsequent cycles as well. For all subsequent data anal-
ysis such readings were assigned a value equal to the con-
centration of the lowest detectable quality control
standard (21,200 pg/mL). Levels of sVEGFR-3 were
decreased by at least 30% in 48 of 55 cases (87%) during
the first cycle, and by at least 20% in all but 2 cases. For
each of these markers, levels tended to return to near-
baseline after the 2-week off-treatment period between
cycles. This suggests a drug-dependent effect, similar to
that seen with the other proteins, as illustrated by the pat-
terns of mean and median ratios to baseline for sVEGFR-
3 (Figure 2). In the case of VEGF, the magnitude of ratios
to baseline at cycle 1, day 28 was higher on average in
cases with VEGF baseline values less than the overall
median (68.2 pg/mL) compared to cases with higher base-
line values (5.7 vs. 3.1; P = 0.039). No significant differ-
ence was observed in similar analysis for sVEGFR-2 and
SVEGFR-3; this was not done for PIGF due to the detection
limitations at baseline for this analyte.
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Figure 2

Mean and median ratios to baseline for sVEGFR-3 at each timepoint in various treatment cycles. The format fol-

lows the same convention as in Figure |.
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Correlation Between Biomarker Responses and Drug
Exposure

Exploration of the potential relationships between an
indicator of sunitinib exposure (trough drug levels) and
the modulation of plasma protein levels was performed.
Linear regression analysis revealed a modest correlation
between total drug trough drug levels (Cy;,g, Of sunitinib
and SU12662, combined) at the end of the first two cycles
and the change in mean sVEGFR-2 plasma levels at the
end of cycle 1, relative to baseline (Figure 3a). Similar
analysis of the change in SVEGFR-3 levels revealed a trend
towards greater sSVEGFR-3 reduction at higher trough lev-
els (Figure 3b); however, the trend was weaker than that
observed for SVEGFR-2. Such a linear trend was not as
apparent in similar analysis for VEGF and PIGF modula-
tion (data not shown); however, analyses of the fold-
change in mean plasma levels of VEGF and PIGF at differ-
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Figure 3

Correlation between trough drug levels (sunitinib
and SU12662, combined) and the intrapatient
changes in sVEGFR-2 (panel a) and sVEGFR-3 (panel
b) plasma levels during first and second treatment
cycles. (Symbols: = CI1D28; A = C2D28)

http://www.translational-medicine.com/content/5/1/32

ent ranges of trough levels indicated a threshold effect
with higher mean fold-changes found for trough levels
between 50 and 90 ng/mL as compared to those <50 ng/
mlL, with a further increase at levels >90 ng/mL (Figure 4).
This observation suggests a threshold effect for maximal
induction of VEGF and PIGF, although there is still con-
siderable overlap in the range of fold-changes across the
different trough exposure categories.

Correlation of Mean Plasma Protein Level Changes with
Objective Tumor Response

As summarized above, significant clinical benefit was
achieved in this study [14]. To assess potential correla-
tions between the biomarker proteins and objective
tumor response, the primary endpoint of the clinical
study, a comparison of the biomarker results was per-
formed between the 25 patients with RECIST-defined PR
and 32 of the 38 patients with SD or progressive disease
(PD). (All cases with baseline and at least one post-treat-
ment timepoint were included). Significantly larger pro-
portional changes in VEGF, sVEGFR-2, and sVEGFR-3
levels were observed in patients exhibiting objective
tumor response compared with those exhibiting SD or PD
(i.e., 'non-PR') (Table 3); PIGF values were not evaluated
in this analysis. The significance was most apparent when
only on-treatment ratios (i.e., day 28 of the first 3 cycles)
were compared. Analysis in Table 3 is limited to the first 3
treatment cycles, since several patients who did not

Fold-change (day 28 over baseline)
o
o o
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@ @ com| oo

m@w@no] o®

o
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Figure 4

Fold-changes (ratios to baseline) in mean plasma lev-
els of VEGF and PIGF at different trough levels (x-
axis), indicative of a threshold effect. Fold-change values
shown are from cycle |, day 28 over baseline (cycle |, day 1).
*X-axis categories refer to ranges of combined trough drug
levels at day 28 of cycle | (in ng/mL); **For PIGF, many of the
fold-change values are minimum estimates; values below the
lower limit of quantification (LLQ) were assigned value equiv-
alent to the LLQ (26.2 pg/mL)
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Table 3: Comparison of changes in levels of soluble protein biomarkers (VEGF, sVEGFR-2, and sVEGFR-3) in patients with partial
response (PR) vs. patients that did not achieve partial response (Non-PR). The sample size listed for each group in each case refers to
the number of ratios to baseline represented within the different intervals.

Mean Fold Change P value

PR (n) Non-PR (n) (t-test; rank sum)

VEGF

All timepoints (cycles 1-3) 5.22 (123) 2.87 (122) 0.0022; 0.035

All day 28 timepoints (cycles 1-3) 791 (74) 3.94 (75) 0.0005; 0.0001
sVEGFR-2

All timepoints (cycles 1-3) -1.73 (123) -1.57 (121) 0.0082; 0.001

All day 28 timepoints (cycles 1-3) -2.12 (74) -1.79 (75) 0.0003; 0.0003
sVEGFR-3

All timepoints (cycles 1-3) -1.63 (123) -1.51 (123) 0.108; 0.104

All day 28 timepoints (cycles 1-3) -2.17 (74) -1.89 (76) 0.010; 0.042

n = number of post-treatment:baseline ratios in each group.

achieve PR were not treated beyond 3 cycles. It should be
noted that while overall, there appeared to be a greater
pharmacodynamic effect in the PR group, the patterns of
change for these proteins were not discrete enough to
allow for definitive response prediction on an individual
basis. It is likely that changes in circulating protein levels
(detectable here at the first post-treatment sample collec-
tion, on day 28) preceded tumor size reductions in at least
some cases, since the median time to first observation of
partial response was 2.3 months [14]. Baseline plasma
levels of these proteins did not differ significantly between
the PR and non-PR response groups in this analysis.

For the purpose of illustrating how the patterns of each of
these endpoints may be inter-related, hierarchical cluster-
ing analysis was performed on the fold-changes for each
soluble protein (cycle 1, day 28 over baseline), on Cyqgn
levels, and on binary scores assigned for best objective
tumor response (Figure 5). This 'heat map' depiction indi-
cates that VEGF and PIGF inductions often occur in paral-
lel, though not necessarily to the same extent of
magnitude (with the caveat that baseline PIGF levels are
often not quantifiable with the ELISA method); similarly,
SVEGFR-2 and sVEGFR-3 reductions tend to occur in par-
allel, but not to the same extent. In this illustration, clus-
tering analysis, using categorical values to represent best
objective response outcomes for each patient, suggests
that a greater proportion of PR cases are grouped in the
range where greater biomarker changes are observed in
cycle 1.

Discussion

This study characterizes circulating levels of the angiogen-
esis-related proteins VEGF, PIGF, sVEGFR-2, and the novel
SVEGFR-3 in patients with metastatic RCC treated with
sunitinib, a receptor tyrosine kinase inhibitor with anti-
VEGF activity. VEGF and PIGF plasma concentrations
increased in many patients after dosing with sunitinib; in
contrast, SVEGFR-2 and sVEGFR-3 plasma concentrations

were decreased in most patients. Patterns of change for
each protein were statistically significant and reproducible
over multiple treatment cycles in a cyclical manner, con-
current with the sunitinib dosing schedule and suggesting
a dose response. The generally similar effects seen for both
VEGF and PIGF are perhaps reflective of sunitinib inhibi-
tion of both VEGFR-1 and VEGFR-2, as PIGF is a ligand
that specifically binds to VEGFR-1. Changes in each of
these four proteins also exhibited some dependence on

fﬁlﬁﬁ‘m‘u‘mrﬁﬁ?%immi;m i

SVEGFR-3

SVEGFR-2

Objective Response

Combined Drug Cyyougn

PIGF

VEGF

Figure 5

Hierarchical clustering analysis of soluble protein
fold-changes from baseline, drug trough levels, and
denotation of best objective clinical responses in
each case. Fold-changes over baseline for VEGF, sVEGFR-2,
sVEGFR-3, and PIGF were log2-transformed. C,, 4, values
were divided by 10 and then log2 transformed. For objective
responses, best response of 'PR' was assigned a score of 2,
'SD' was assigned a score of |, and 'PD' was assigned a score
of 0.5, and these assigned scores were also log2-transformed.
Red indicates higher values (i.e., positive fold-change or posi-
tive response), and green indicates lower values (i.e., reduc-
tion from baseline or no response); grey indicates missing
values.
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drug exposure levels as measured by combined trough
drug levels, although it is clear that the degrees of change
are not strictly correlated with trough drug levels (e.g.,
note the extent of overlap in VEGF and PIGF ratios
between the different trough exposure ranges in Figure 4,
despite the significant differences overall). Levels of each
protein are restored to near baseline levels by the end of
the two-week off-treatment period, during which
sunitinib levels are cleared, further indicating that the
effects are due to sunitinib activity. Interestingly, the solu-
ble VEGF receptors appear to exhibit a less complete
return to baseline levels than do VEGF and PIGF.

Elucidation of the mechanism(s) responsible for VEGF
and PIGF induction will require further study, but it is rea-
sonable to speculate that treatment-related increases in
tumor hypoxia may be involved, perhaps via increased
activity of HIF-1la or other hypoxia-inducible factors.
However, the induction may not be completely tumor-
dependent, as laboratory studies suggest that VEGF induc-
tion following treatment with anti-VEGFR2 monoclonal
antibodies can occur in non-tumor-bearing mice [30].
Interestingly, induction of VEGF was not observed in sim-
ilar experiments where small molecule VEGFR inhibitors
were tested (SU5416 and PTK-787; ref. [30]). (It is worth
noting that significant induction of circulating VEGF lev-
els has been reported for PTK-787 in a clinical study of
colorectal cancer patients [31], and also in another report
on results in mouse models [32]; the discrepancy between
the mouse study results could be due to differences in
experimental design). Also, VEGF induction has been
reported in acute myeloid leukemia patients following
treatment with sunitinib [26], and induction of VEGF and
PIGF has been observed in patients with AML or myelod-
ysplastic syndrome following treatment with the VEGFR
inhibitor AG-013736 [33], implying that induction of
VEGER ligands is not limited to patients with solid
tumors. The extent of VEGF induction, or lack thereof, can
vary widely from case to case despite some correlation
with trough drug levels; this implies complex regulation
of this factor in response to sunitinib activity and indi-
cates a need for further mechanistic studies. The amount
of VEGF at baseline may be one of the contributing factors
to the extent of induction.

Sunitinib modulates the plasma levels of two soluble
VEGF receptors, sVGEGFR-2 and sVEGFR-3, both of which
are generally decreased during treatment. Circulating sol-
uble, or shed, receptor fragments have been reported for a
large and growing number of receptor tyrosine kinases.
These include HER2/erbB-2 [34-36], EGFR [37,38],
FGFR1 [39], axl [40], TIE-2 [41], Mer [42], c-Met [43,44],
and c-kit [45,46]. These molecules typically are truncated
proteins consisting primarily of receptor ectodomains
(ECD), and are thought to be primarily shed via proteo-

http://www.translational-medicine.com/content/5/1/32

lytic cleavage at the cell surface. (There is also a soluble
form of VEGFR-1, known to be generated via differential
splicing of VEGFR-1 mRNA; though this soluble receptor
may also be of interest for sunitinib studies, it was not
assessed in this study due to lack of an available ELISA
assay that would be compatible with the heparinized
plasma samples collected here.) Importantly, a number of
examples have been reported wherein circulating levels of
soluble receptors are modulated in cancer patients by
oncology drugs. Such is the case for trastuzumab treat-
ment and soluble Her2/neu ECD in breast cancer [47,48],
for soluble EGFR during chemotherapy in breast cancer
[49], and for soluble c-kit in response to imatinib treat-
ment in gastrointestinal tumor (GIST) patients [50].
Sunitinib treatment also has shown a longitudinal effect
on soluble c-kit levels in GIST as well as other tumor types
including RCC [51,52]. To a large extent, the biology of
naturally occurring soluble RTK is not well understood, in
terms of their genesis, their roles in regulating signaling
pathways and ligand bioavailability, or their potential
roles in various disease processes.

The strikingly consistent longitudinal changes elicited in
SVEGFR-2 and sVEGFR-3 by sunitinib treatment suggests
that these changes may be directly reflective of VEGF
receptor inhibition, though it is unknown whether this
involves changes in receptor synthesis, turnover, proteo-
lytic cleavage, or a combination of mechanisms. Increased
receptor internalization triggered by sunitinib binding
may not be likely to be a factor, as indeed it is VEGFR-2
activation (autophosphorylation) which is believed to
lead to receptor internalization, not its inhibition [53].
Another small molecule VEGFR inhibitor, SU5416, has
been shown to not directly affect the cell surface expres-
sion of VEGFR-2 [54]. Preliminary experiments evaluating
the effect of sunitinib treatment of human umbilical vein
endothelial cell (HUVEC) cultured in vitro indicate that
levels of SVEGFR-2 in cell culture conditioned media are
actually moderately increased (~25%) after 72 hours
treatment with 10-100 nM sunitinib (data not shown);
this suggests that HUVEC cells do not recapitulate the
effect of decreased sVEGFR-2 plasma levels observed in
patients treated with sunitinib, and the impact of
sunitinib on reducing HUVEC cell viability or prolifera-
tion rate in culture may influence the observed effect. Fur-
ther investigation into the processes that underlie the
regulation of the soluble receptors and ligands is required,
with in vivo model approaches perhaps likely to be most
informative as they provide an opportunity to measure
the effects in the context of full physiological and anatom-
ical microenvironments.

The pharmacodynamic effects on the circulating proteins
in this study are generally consistent with preliminary
results from similar biomarker analyses in phase II studies
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of metastatic neuroendocrine tumors (NET) [55] and met-
astatic breast cancer (mBC) [56] in which sunitinib was
administered using the same dose and schedule. For 106
evaluable patients with metastatic NET, VEGF levels were
increased more than 3-fold (compared with baseline) in
~50% of patients, and sVEGFR-2 and sVEGFR-3 levels
were significantly decreased by greater than 30% in ~60%
and 70% of all patients, respectively (P < 0.0001). The
reduction in SVEGFR-3 levels was also moderately corre-
lated with tumor response in this study [55]. In the study
of mBC, with biomarker data for 62 patients, VEGF levels
were increased more than 3-fold relative to baseline in the
majority of cases, while sVEGFR-2 levels were decreased
by more than 20% in all but 4 cases [56]. Levels of
SVEGFR-3 were decreased by more than 30% in 82% of
cases during the first cycle, and preliminary evidence of a
trend towards greater clinical benefit was observed in
patients with a >20% reduction in sVEGFR-3 at the start of
the second cycle [56]. Like RCC, metastatic NET and mBC
are highly vascular and characterized by high levels of
VEGF/VEGFR [57-59], which may account for the similar
observations in these analyses.

In summary, these findings suggest that a panel of circu-
lating proteins have utility as biomarkers of pharmacolog-
ical and clinical activity. Each of these proteins has a
known (in the cases of VEGF and PIGF) or presumed (in
the cases of the more novel sVEGFR-2 and -3) role in the
regulation of angiogenic activity, and the modulation of
plasma levels induced by sunitinib treatment is likely to
be directly related, at least in part, to inhibition of VEGF
signaling via receptor blockade. Assessment of these
biomarker variables may help provide a window into bio-
chemical changes triggered by sunitinib and other anti-
angiogenic agents. These biomarkers may also provide
insights on the pharmacodynamic activity of sunitinib
given in different dosing regimens or dosed in combina-
tion with other chemotherapeutic agents or targeted ther-
apies, or on the pharmacodynamic activity of other RTK
inhibitors. They may also prove useful in non-clinical
mechanistic studies of RTK signaling modulators. Further
basic laboratory investigations into the structure, bio-
chemical regulation, and molecular physiology of the rel-
atively novel soluble factors VEGFR-2 and VEGFR-3 is also
warranted. Given the clear effect on these four proteins
related to sunitinib treatment, it is reasonable to speculate
that additional factors are modulated during treatment
with anti-angiogenic cancer therapeutics; multiplexed
proteomic analysis of plasma or serum samples from lab-
oratory and clinical studies is likely to identify additional
candidate biomarkers, some of which may have further
utility in measuring biologic effects and perhaps predict-
ing treatment outcome.

http://www.translational-medicine.com/content/5/1/32

Conclusion

Plasma levels of circulating proteins involved in VEGF sig-
naling were modulated in a phase II study of sunitinib in
advanced RCC (n = 63), changes for several of which were
also correlated with objective tumor response. Changes
induced by sunitinib treatment are likely to be directly
related, at least in part, to inhibition of VEGF signaling via
receptor blockade. This analysis showed that these pro-
teins could be of value as biomarkers of the pharmacolog-
ical and clinical activity of sunitinib and other anti-
angiogenic agents in RCC, and of angiogenic processes in
cancer and other diseases.
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