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Abstract
Nature has always been a highly productive tool in the development of anticancer therapies.
Renewed interest in the potential of this tool has recently been sparked by the realization that the
marine ecosystem can be used for the discovery and development of new compounds with clinical
potential in advanced resistant tumors. These compounds can be incorporated into combination
approaches in a chronic therapy scenario. Our marine anticancer program is using the sea to
develop new agents with activity in resistant solid tumors and to identify new cellular targets for
therapeutic intervention. This review describes the integration of different pharmacogenomic tools
in the development of Yondelis™, Aplidin® and Kahalalide F, three marine-derived compounds
currently in Phase II or III development. Our results are reinforcing the targeted selectivity of these
agents and opening the gates for customized therapies in cancer patients in the near future.

Introduction
There is no doubt that major progress is being made in
cancer treatment. The availability of non-cross-resistant
regimens that are active in specific solid tumors means
that several lines of therapy can be administered to
patients. Thus, even in advanced stages, the disease can be
chronified, and long-lasting survival can be achieved in
selected responsive patients [1,2]. However, new stand-
ards of care are often the results of a trial-and-error
approach, which means that large cohorts of patients are
treated rather empirically in order to obtain clinical bene-
fit in a relatively small proportion of patients.

The identification of specific molecular signatures and
genetic polymorphisms that correlate with treatment out-
come and treatment-associated toxicity has made it possi-
ble to propose "target" populations for cytotoxic therapy
in patients with advanced solid tumors and hematologic

malignancies [3,4]. The clinical impact of such an
approach can be dramatic. For example, in the target pop-
ulation of lung adenocarcinoma patients harboring epi-
dermal growth factor receptor (EGFR) tyrosine kinase
domain mutations, treatment with EGFR tyrosine kinase
inhibitors can achieve long-lasting responses in a high
proportion of patients [5,6]. The incorporation of such
molecular tools into contemporary drug development is
mandatory if we are to optimize the clinical impact of new
anticancer agents.

This review summarizes the information gathered from a
translational research pharmacogenomic program that is
being conducted with Yondelis™, Aplidin® and Kahalalide
F, three marine anticancer compounds that are active in
pretreated cancer patients and are currently in phase II or
III clinical development [7].
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YondelisTM (Trabectedin, ET-743)
Yondelis™ is a tetrahydroquinoline alkaloid identified in
the Caribbean tunicate Ecteinascidia turbinata (Fig. 1). Ear-
lier studies on the mechanism of action of Yondelis corre-
lated its antitumor activity with a sequence selective
binding to guanine in the minor groove of DNA and with
a broad inhibition of activated transcription [8-11].

Yondelis™ is active in patients with advanced soft tissue
sarcoma that is resistant or has relapsed after conventional
therapies, with evidence of long-lasting objective
responses and tumor control in 22% of cases [12-14]. No
significant differences were observed in response to Yon-
delis™ between chemosensitive and chemoresistant
patients. This finding, together with the large differences
in survival time observed between responders and non-
responders to Yondelis™, may indicate a differential
molecular signature that correlates with clinical outcome
to Yondelis™, at least in sarcoma patients. Such clinical
evidence provided a rationale to look for a potential
molecular predictive marker for response to Yondelis™
[15].

In addition to the clinical evidence, strong evidence from
the pre-clinical studies indicates that an efficient transcrip-
tion coupled (TC) nucleotide excision repair (NER) sys-
tem is crucial to the antitumor activity of Yondelis™
[16,17]. TC-NER involves genes that are deficient in rare
inborn disorders such as Cockayne syndrome and xero-
derma pigmentosum. Patients with mutations in the TC-
NER system exhibit an increased predisposition to
develop cancer [18]. The TC-NER system is involved in the
repair of bulky adducts induced by classical alkylating
agents and by platin salts. In fact, cytotoxic drugs are less
active in TC-NER-efficient tumors, in contrast to Yonde-

lis™, which requires an efficient TC-NER system. This dif-
ferential pharmacodynamic effect led us to investigate a
possible correlation between the mRNA expression levels
of specific DNA repair genes and the clinical outcome of
patients treated with Yondelis™. As a result, a pharmacog-
enomic model was implemented to identify a customized
therapy for prospective validation (Fig. 2).

The first model included the molecular characterization of
a panel of low passage human sarcoma cell lines
explanted from chemonaive patients [19], which included
different sarcoma sub-types; in this panel of sarcoma cell
lines, an IC50 > 1 nM was established as the cut-off for
resistance. This concentration may be achieved and main-
tained for more than 72 hours in plasma of sarcoma
patients treated below the recommended clinical dose
incorporated in the phase II trials, and is therefore consid-
ered to be therapeutically appropriate for this experimen-
tal study [20]. The in vitro results indicated a pattern of
primary sensitivity and resistance in cell lines that was in
line with the fact that sarcoma patients can be either
highly sensitive or fully resistant to Yondelis™. Further-
more, a complete lack of cross-resistance with doxoru-
bicin, the drug used as first line treatment in sarcoma
patients, was observed. In addition, although mutated
p53 is associated with resistance to conventional antican-
cer therapies and is considered to be a poor prognostic fac-
tor for outcome in cancer patients [21], studies suggest a
direct correlation between mutated p53 and in vitro sensi-
tivity to Yondelis™. These interesting early results are cur-
rently being validated in a larger human sarcoma panel.

The full panel of human sarcoma cell lines was further
exposed to the clinically relevant concentration of 10 nM
Yondelis™ during different incubation times. RNA from
the cells was extracted at 0, 6, 24, 48 and 72 hours, and
baseline and dynamic gene expression profiles (GEP)
were assessed [22], using the Oncochip cDNA microarray
(developed by the Spanish National Center for Cancer
Research), which includes clones of 6388 cancer related
genes [23]. GEP revealed upregulation of 86 genes and
downregulation of 244 genes in the cell line panel after in
vitro exposure to pharmacological concentrations of Yon-
delis™ for 24 hours. This gene expression signature
induced after Yondelis™ treatment identified a group of
genes involved in cell cycle control, DNA damage
response and apoptosis.

Based on the differential baseline and dynamic GEPs
observed in sensitive and resistant sarcoma cell lines, we
have drawn up a set of potential genetic markers of
response to Yondelis™ and are currently using quantitative
RT-PCR to assess their mRNA expression levels and pro-
tein expression in tissue arrays from sarcoma patients [24]
(Table 1).

Chemical structure of Yondelis™Figure 1
Chemical structure of Yondelis™.
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The correlation between DNA repair capacity and sensitiv-
ity to Yondelis™ in experimental models led us to conduct
a retrospective study in tumor samples from advanced
resistant or relapsed sarcoma patients treated with Yonde-
lis™ to correlate DNA repair capacity with treatment out-
come [25]. RNA was extracted from paraffin-embedded
tumors to determine the mRNA expression levels of
ERCC1, BRCA1 and XPD by quantitative RT-PCR. ERRC1
(subunit of a 5'-endonuclease) and XPD (subunit of a
DNA helicase) are involved in the NER pathway, and
upregulation of these genes in tumors results in a poor
outcome to treatment with DNA-interacting agents [26].
BRCA1 is involved in homologous recombination repair
and non-homologous end joining in response to double-
stranded breaks DNA damage [27]. In lung cancer, upreg-
ulation of BRCA1 has been linked to both increased resist-
ance to cisplatin and increased sensitivity to taxanes
[28,29]. Our retrospective study included 45 heavily pre-
treated sarcoma patients; the overall objective response
rate was 11%, progression free survival at 6 months
(PFS6) was attained by 22% of patients, and the median
overall survival was 11.8 months. These findings are fully

consistent with earlier results [15]. The mRNA expression
studies indicate that low (below the median) levels of
BRCA1 correlate with a higher objective response rate
(24% in low levels vs 6% in high levels). Moreover, 36%
of patients with low levels attained PFS6, compared to
only 6% of those with high levels (P = 0.06). Median sur-
vival was 16.8 months in patients with low levels and 6
months in those with high levels (P = 0.02). In contrast,
patients with high mRNA expression levels of XPD and
ERCC1 showed a tendency towards better response rate
and superior PFS6 figures.

In summary, our translational pharmacogenomic
research with Yondelis™ in sarcoma has identified a set of
genes that correlate with the in vitro response to pharma-
cological concentrations of the compound. The data gath-
ered in our retrospective analysis of tumor samples from
sarcoma patients demonstrate that clinical response to
Yondelis™ is modulated by the molecular profile of sev-
eral DNA repair genes in a unique differential pattern not
applicable to other DNA-interacting agents, such as doxo-
rubicin, a drug often used in the treatment of sarcomas.

Strategy of the proposed pharmacogenomic program of Yondelis™ in sarcoma patients: Gene expression profiles of tumor samples from sarcoma patients treated with Yondelis will be retrospectively analyzed and correlated with their clinical out-comeFigure 2
Strategy of the proposed pharmacogenomic program of Yondelis™ in sarcoma patients: Gene expression profiles of tumor 
samples from sarcoma patients treated with Yondelis will be retrospectively analyzed and correlated with their clinical out-
come. The DNA repair capability will be analyzed in blood samples of the same patients in order to be used as surrogate 
marker of response. The putative correlation found between GEP and clinical outcome will be prospectively analyzed in sar-
coma patients and further studied in other tumors.
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Aplidin® (Plitidepsin, APLD)
Aplidin® (Fig 3) is a marine depsipeptide found in the
Mediterranean tunicate Aplidium albicans. Aplidin® is an
NCI COMPARE compound that induces G1 cell-cycle
arrest and very rapid p53- and MDR-independent apopto-
sis [30]. Aplidin®-induced apoptosis seems to be mediated
through mitochondrial pathways involving JNK-depend-
ent oxidative stress, activation of p38 and protein C delta
kinases, and glutathion depletion [31,32]. Interestingly,
Aplidin® affects the endothelial vascular growth factor
(VEGF) pathway, which may account for its apoptotic
activity. Aplidin® affects VEGF secretion by inducing a
two-fold inhibition of the autocrine loop and a downreg-
ulation of the VEGF flt-1 receptor in acute lymphoblastic
leukemia cell lines [33]. However, the reported accumula-
tion of the VEGF mRNA transcript suggests a selective
impact on VEGF secretion but not VEGF production [34].
An in vivo study in anaplastic thyroid carcinoma studied
the changes in GEP in response to Aplidin® and found a
potential effect on the expression of angiogenesis-related
genes. RNA was extracted from control and Aplidin®-
treated tumors and hybridized on a cDNA microarray
(GEarray Q series Human Angiogenesis Array (HS-009)
containing probes from 96 genes involved in angiogen-
esis. The results showed a dramatic reduction of VEGF-D
expression in the tumors of treated animals as well as a
complete loss of other angiogenesis-related genes such as
hypoxia inducible factor-1, vasostatin and cadherin. In
contrast, in vivo exposure to Aplidin® led to an increase in

the levels of proteins involved in apoptosis, such as PARP-
85 and caspase 8 [35].

Aplidin® has demonstrated activity and feasibility in
chemoresistant adult cancer patients, with a remarkably
low rate of bone marrow and hematological toxicity. It is
currently in active phase II development in solid tumors
and hematological malignancies.

The pharmacodynamic impact of Aplidin® in the VEGF
loop, as well as its low rate of hematotoxicity, led us to
investigate its effect in hematological malignancies, espe-
cially in acute leukemia, lymphomas and multiple mye-
loma. A series of experimental studies conducted in
leukemia blasts from pediatric and adult leukemia
patients confirmed that Aplidin® is able to induce massive
apoptosis at therapeutic concentrations of 5–10 nM [36],
with no full cross-resistance to conventional anticancer
agents except gemcitabine [37]. The reason for this cross-
resistance is so far unexplained and further experiments
are planned to elucidate this finding. The in vitro data
demonstrates clear differences between blasts from leuke-
mia patients who are highly sensitive or resistant to Apli-
din® (Fig. 4).

These results with leukemic blasts enabled us to develop a
pharmacogenomic model of a molecular fingerprint for
sensitivity or resistance of leukemic blasts to Aplidin® .
RNA was isolated from patient blasts and specific GEPs
were analyzed in the cDNA cancer specific array Onco-

Table 1: Candidate markers of response* to Yondelis

Gene ID Description

IFITM2 interfer on induced transmembrane protein 2 (1-8D)
TP53 tum or protein p53 (Li-Fraumeni syndrome)
COL5A2 collagen, type V, alpha 2
JUNB jun B proto-oncogene
BST2 bone marrow stromal cell antigen 2
HHEX hematopoietically expressed homeobox
SERPINA3 serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3
ATF3 activating transcription factor 3
ABL1 v-abl Abelson murine leukemia viral oncogene homolog 1
BRCA1 breast cancer 1, early onset
ERCC2 XPD excision repair cross-complementing rodent repair deficiency, complementation group 2 

(xeroderma pigmentosum D)
ERCC3 XPB excision repair cross-complementing rodent repair deficiency, complementation group 3 

(xeroderma pigmentosum group B complementing)
PCNA proliferating cell nuclear antigen
POLD3 polymerase (DNA directed), delta 3 (Interim)
POLR2G polymerase (RNA) II (DNA directed) polypeptide G
PRKDC protein kinase, DNA-activated, catalytic polypeptide
PTTG1 pituitary tumor-transforming 1
RAD17 RAD17 homolog (S. pombe)

* Genes were selected based on several in vitro experiments of differential baseline (resistant cells vs sensitive cells) and dynamic (treated cells vs 
untreated cells) Gene Expression Profiles observed in sarcoma cell lines. Their mRNA and protein expression levels are currently being analyzed in 
tumor samples from sarcoma patients and correlated with clinical outcome in order to validate them as potential markers of response to Yondelis.
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chip®. The results [38,39] indicated a GEP signature spe-
cific for sensitive and resistant acute myeloid and acute
lymphoblastic leukemic blasts (Fig. 5). This model is
being incorporated into the ongoing phase II trial with
Aplidin® in resistant and relapsed acute lymphoblastic
leukemia. If a correlation is observed between baseline
GEP and patient outcome, a target population can be
identified for future developmental strategies. The same
approach has been implemented in the phase II trial in
pretreated multiple myeloma.

Studies of Aplidin® in combination with other agents in
hematological malignances are currently ongoing. In
addition, GEP assessment is being incorporated in in vivo
studies to investigate the molecular basis behind the
strong synergism of Aplidin® and ARA-C in leukemia and
lymphoma models [40]. Initial GEP analyses in these
experimental models, using the U133A GeneChip
(Affymetrix), suggest that Aplidin®-ARA-C combination
affects multiple pathways including MAP kinase pathway,
WNT signaling pathway, cell cycle regulators and the tri-
carboxylic acid cycle. Interestingly, the GEPs from the in
vivo combination APLD-ARA-C studies demonstrate a sig-

nificant downregulation of cytidine deaminase, an
enzyme that deactivates ARA-C.

Kahalalide F
Kahalalide-F is a cyclic peptide found in the Hawaiian
nudibranch E. rufescens (Fig. 6). Kahalalide-F is an NCI-
COMPARE compound that induces sub G1 cell-cycle
arrest and cytotoxicity independently of MDR, Her2, p53
and blc-2 [41]. It has completed the phase I program with
evidence of a positive therapeutic index in patients with
solid tumors and prostate cancer [7,42] and is under
active phase II development in liver cancer, melanoma
and non-small cell lung cancer.

The COMPARE analysis in a panel of 60 human cancer
cell lines genetically and molecularly characterized for cell
proliferation pathways has included Kahalalide-F in the
list of new chemical entities that interact with the Erb/
Her-neu pathway [43]. This specific interaction has been
described in a translational program that has confirmed a
selective downregulation of ErbB3 expression by KF treat-
ment. Expression of ErbB3 is seen in many of the same
tumor types that overexpress ErbB2, including breast,
bladder and melanomas. The involvement of ErbB3 over-

Chemical structure of Aplidin®Figure 3
Chemical structure of Aplidin®.
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expression in the genesis and maintenance of lung adeno-
carcinomas has been recently suggested [44]. ErbB3 is a
major recruiter of phosphoinositide 3-kinase (PI3K); it
often couples to other ErbB receptors to activate the
downstream Akt pathway and promotes the cancer phe-
notype. Sensitivity to Kahalalide-F significantly correlated
with baseline expression levels of ErbB3 (HER3), but not
of other ErbB receptors, in a panel of established cell lines
from different origins. Furthermore, the downstream
PI3K/Akt pathway coupled to ErbB3 receptor is also
affected by KF treatment. KF decreases phosphorylated
Akt levels and this reduction is associated with cytotoxic-
ity in Kahalalide-F-sensitive cell lines [45]. These findings
suggest that ErbB3 may be a potential marker for Kahala-
lide-F sensitivity in patients.

Discussion
In this review, we have described the different approaches
that have led us to propose pharmacogenomic models for

three innovative marine anticancer compounds that are
under clinical development.

The dynamic GEP study with Yondelis™ in human sar-
coma cell lines has confirmed its impact on transcrip-
tional machinery, shedding light on the molecular basis
for its antiproliferative effects. The in vitro model has also
been instrumental in the identification of differential
baseline gene signatures that correlate with sensitivity or
resistance to Yondelis™, thus reducing the set of genes that
can be considered potential biomarkers for response vali-
dation studies. Tumor samples from Yondelis™-treated
sarcoma patients are being collected to build tissue arrays
to confirm the impact of gene expression levels on patient
response. Preliminary data from a small cohort of heavily
pretreated sarcoma patients indicates that the SNPs and
the mRNA expression levels of a number of DNA repair
genes induce a differential response to Yondelis™. These
interesting findings confirm that sensitivity to Yondelis™

Aplidin® in vitro differentiation of sensitive and resistant leukemic blastsFigure 4
Aplidin® in vitro differentiation of sensitive and resistant leukemic blasts.
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bears a unique correlation with the NER and the homolo-
gous recombination repair systems. Such findings are in
contrast with the data on platin salts and other DNA bind-
ing agents [26,28] and on taxanes [27], providing support
for the use of Yondelis™ in combination strategies [46-48]
to increase disease control in highly resistant patients.
These clinically relevant findings are now being validated
in a second retrospective cohort of more than 100 sar-
coma patients treated with Yondelis™ and will be further
confirmed in prospective clinical validation studies.

The impact of DNA repair capacity on treatment outcome
with Yondelis™ is not limited to sarcoma but is applicable
to other tumors as well. For this reason, pharmacoge-
nomic studies in other tumors that are highly sensitive to
Yondelis™, such as relapsed ovarian cancer [49], are
strongly encouraged.

Pharmacogenomic studies examining baseline GEPs that
may be linked to the in vitro response of leukemic blasts
to Aplidin® have been incorporated into phase II studies in
relapsed lymphoblastic leukemia and multiple myeloma.
Retrospective studies to identify differential GEPs in other
solid tumors that are sensitive to Aplidin®, such as
advanced pretreated melanoma [50], are also ongoing.
"Preclinical pharmacogenomics" have been instrumental
to understand the molecular basis behind Aplidin® apop-
totic effects as well as to provide a basis for combination
studies. In fact, recent in vivo dynamic GEP studies have
confirmed a major impact on angiogenesis-related genes,
thus providing a rationale for combining Aplidin® with
other VEGF-interacting agents.

Experimental evidence for a selective impact of Kahalal-
ide-F on the ErbB3 pathway has provided a basis for stud-
ies to validate these findings in extremely sensitive or
resistant in vitro and in vivo models. Results from these

Molecular signatures of sensitivity to Aplidin (APLD) in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patient blastsFigure 5
Molecular signatures of sensitivity to Aplidin (APLD) in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) 
patient blasts.
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studies could justify further explorations in tumor sam-
ples from patients. This experimental data has established
a basis for in vitro and in vivo studies combining Kahalal-
ide F with ErbB kinase inhibitors and ErbB monoclonal
antibodies.

Conclusion
Our journey into the new era of pharmacogenomics has
confirmed that these new tools can potentially elucidate
the molecular basis behind individual differences in the
pharmacodynamic effects of marine anticancer com-
pounds and enable us to design customized models for
therapeutic intervention in cancer patients. A better
understanding of the molecular determinants of thera-
peutic response will help identify patients at risk for severe
toxicities or those more likely to respond to a given thera-
peutic regimen [51], thus paving the way for customized
anticancer therapy to become a reality in the near future.
A proactive interaction between researchers, the pharma-
ceutical sector and government regulating agencies is cru-
cial to the incorporation of this challenging new tool in
clinical medicine.
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Chemical structure of Kahalalide FFigure 6
Chemical structure of Kahalalide F.
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