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Abstract

Background: Vaccination with dendritic cells (DC) loaded with tumor antigens elicits tumor-specific immune
responses capable of killing cancer cells without inducing meaningful side-effects. Patients with advanced
melanoma enrolled onto our phase II clinical studies have been treated with autologous DC loaded with
autologous tumor lysate/homogenate matured with a cytokine cocktail, showing a clinical benefit (PR + SD) in
55.5% of evaluable cases to date. The beneficial effects of the vaccine were mainly restricted to patients who
developed vaccine-specific immune response after treatment. However, immunological responses were only
induced in about two-thirds of patients, and treatments aimed at improving immunological responsiveness to
the vaccine are needed.

Methods/Design: This is a phase II, “proof-of-principle”, randomized, open-label trial of vaccination with autologous
DC loaded with tumor lysate or homogenate in metastatic melanoma patients combined with immunomodulating RT
and/or preleukapheresis IFN-α. All patients will receive four bi-weekly doses of the vaccine during the induction phase
and monthly doses thereafter for up to a maximum of 14 vaccinations or until confirmed progression. Patients will be
randomized to receive:
(1.) three daily doses of 8 Gy up to 12 Gy radiotherapy delivered to one non-index metastatic field
between vaccine doses 1 and 2 and, optionally, between doses 7 and 8, using IMRT-IMAT
techniques;
(2.) daily 3 MU subcutaneous IFN-α for 7 days before leukapheresis;
(3.) both 1 and 2;
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(4.) neither 1 nor 2.
At least six patients eligible for treatment will be enrolled per arm. Daily 3 MU IL-2 will be administered subcutaneously
for 5 days starting from the second day after each vaccine dose. Serial DTH testing and blood sampling to evaluate
treatment-induced immune response will be performed. Objective response will be evaluated according to
immune-related response criteria (irRC).

Discussion: Based upon the emerging role of radiotherapy as an immunologic modifier, we designed a randomized
phase II trial adding radiotherapy and/or preleukapheresis IFN-α to our DC vaccine in metastatic melanoma patients.
Our aim was to find the best combination of complementary interventions to enhance anti-tumor response induced
by DC vaccination, which could ultimately lead to better survival and milder toxicity.

Keywords: Vaccine, Melanoma, Radiotherapy, Dendritic cell
Background and rationale
Malignant melanoma
Malignant melanoma represents one of the most chal-
lenging problems in modern oncology. Although it
accounts for only 4% of incident cases of skin cancers,
it is responsible for more than 80% of all skin cancer
deaths [1]. Moreover, its incidence has dramatically
increased in recent decades [2]. Whilst early stage melan-
oma (i.e. primary thin melanomas without regional lymph
node or distance involvement) has a very favourable prog-
nosis with a recurrence rate of less than 10% at five years,
patients with advanced disease experience a very poor
clinical course, with median survival ranging from 4 to
12 months [3]. Furthermore, until very recently, the
clinical efficacy of the available treatments was disappoint-
ing. In early 2011, the FDA approved the clinical use of
ipilimumab, a CTLA 4-blocking monoclonal antibody
which, in addition to significantly improving the sur-
vival of patients with metastatic melanoma, primarily
demonstrated the effectiveness of anti-cancer therapy
based only upon immune system targeting [4,5]. However,
ipilimumab causes a generalized activation of the immune
system which can, in extreme cases, induce severe
autoimmune side-effects [6]. On this basis, immunothera-
peutic approaches capable of eliciting effective anti-tumor
immune responses without the related autoimmunity must
be sought developed.

Dendritic cell vaccination
Vaccination with dendritic cells (DC) loaded with tumor
antigens has been shown to elicit tumor-specific immune
responses potentially capable of killing cancer cells
without inducing significant side-effects [7]. DC are
widely distributed antigen-presenting cells that play a
central role in the activation and regulation of the immune
response [8]. In particular, DC determine the final outcome
of adaptive immune responses against a specific antigen, i.e.
whether it will be tolerated or whether a specific immune
response will be triggered against it. The final outcome
depends on the balance between different signals acting
on the DC and DC antigen uptake. Indeed, if immature
DC recruited to peripheral tissues find appropriate “danger
signals” (i.e. pathogen products capable of triggering
toll-like receptors), they undergo maturation and migrate
to lymph nodes where they initiate a specific immune
response. Conversely, if danger signals are not present,
or if concurrent immunosuppressive stimuli occur, DC
maturation does not take place, thus inducing immune
tolerance against the antigens they are presenting [8].
As cancer progresses, tumor cells acquire the ability to
evade the immune response by selecting lesser immuno-
genic variants (“cancer immunoediting”) [9,10] and/or by
producing immunosuppressive cytokines and other bio-
logically active substances that strongly influence the
ability of DC to prime and sustain effective immune
responses [11,12].
In 1996, Schadendorf ’s group was the first to test, in

melanoma patients, the feasibility of a vaccination strategy
aimed at reconditioning DC function by their differenti-
ation and loading with tumor antigens ex vivo, thus permit-
ting the effects of a DC-tolerant tumor microenvironment
to be overcome [13]. Since this first experience, it has been
estimated that over 1,000 patients with different tumors
have been treated using different starting cells and differen-
tiation/maturation protocols, as well as different antigen
sources and administration routes [14].
Since 2001, patients with advanced melanoma enrolled

onto our phase II clinical studies have been administered
autologous DC loaded with autologous tumor lysate/hom-
ogenate matured with a cytokine cocktail, showing a clinical
benefit (PR + SD) in 55.5% of evaluable cases [15,16].
Like de Vries et al. [17], we saw that patients who devel-

oped anti-tumor immunity after vaccination experienced
a better clinical outcome [16,18]. In particular, we observed
that patients developing delayed type hypersensitivity
(DTH) against autologous tumor lysate or keyhole lympet
hemocyanin (KLH) after at least four courses of the vac-
cine showed a median overall survival (OS) of 22.9 months
compared to the 4.8 months of DTH-negative cases (Log-
rank test, p = 0.007) [16]. Intriguingly, both the disease
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control rate (DCR) and OS obtained with DC vaccination
considerably exceeded those obtained with ipilimumab in
a similar patient setting [4]. However, although differenti-
ation and maturation conditions used for the production
of DC vaccines have been standardized, only two-thirds of
patients develop potentially effective anti-tumor immune
responses. We recently reported that patients showing
upregulated expression of tumor endothelial marker-8
(TEM-8) in monocyte-derived DC upon maturation do
not develop immune reactivity against autologous tumor
lysate (ATL) or KLH on DTH and experience a very poor
clinical outcome after DC vaccination [19].
TEM-8 is an integrin-like cell surface protein specifically

expressed by embryonic and tumor endothelial cells (not,
however, in the adult endothelium) whose functions are
still not fully understood [20]. It was recently shown that
TEM-8 is upregulated in tumor-associated endothelial
cells after exposure to interleukin-1β (IL-1β) [21]; inter-
estingly, IL-1β, together with tumor necrosis factor-α
(TNF-α) and other cytokines produced by tumor cells
(melanoma included) [22], can negatively affect the
differentiation of monocyte-derived DC in vitro [23]. As
IL-1β and TNF-α are components of the cytokine matur-
ation cocktail currently used to prepare the DC vaccine,
it would not be surprising that, at least in a subset of
patients, these cytokines support the differentiation of
DC toward an immunosuppressive TEM-8 + phenotype
rather than the more immunogenic and clinically active
phenotype. In light of this, new treatment conditions
capable of preventing such an occurrence should be
identified.

Potential effects of Interferon-α (IFN-α) on circulating
precursors of DC
IFN-α is a cytokine belonging to type-I interferons that is
currently approved for clinical use in B-cell non-Hodgkin’s
lymphoma, advanced renal cell cancer and, in the adjuvant
setting, malignant melanoma. This cytokine is secreted by
virtually all cells after challenge with viral or bacterial
products, but it can also be produced by transformed cells
or by normal cells under mitogenic stimulus. Its effects on
tumor or virus-infected cells are pleiotropic, ranging from
the direct inhibition of proliferation to the suppression
of oncogene expression and the induction of tumor
suppressor genes. Moreover, IFN-α positively affects
the activity of both the adaptive and innate immune
system, and enhances immune recognition of tumor
cells [24]. Furthermore, IFN-α inhibits the expression of
the proangiogenic inflammatory cytokine, interleukin-8
(IL-8), and IL-1β [25], both of which induce an immuno-
suppressive phenotype in monocyte-derived DC [23].
It is tempting to speculate that treatment with IFN-α,

whilst inhibiting the expression of IL-1β, may also suppress
the maturation-induced TEM-8 upregulation of DC
observed in non-immunoresponsive patients, thus rever-
tingthe TEM-8 associated immunosuppressive phenotype.
In partial support of this hypothesis is our observation of
positive immunization to DTH in all patients who
underwent therapy with IFN-α a maximum of 30 days
before starting DC vaccination (our unpublished data),
suggesting that IFN-α priming performed in vivo before
leukapheresis may enhance the immunostimulatory
profile of DC. Moreover, IFN-α priming may also have a
“mobilizing” activity on DC precursors: it was recently
reported that 1–3 MU subcutaneous IFN-α enhances
the proportion of circulating CD14+ and CD14 + CD16+
monocytes in both healthy donors and melanoma patients
[26].
In the light of these findings, administration of IFN-α

before leukapheresis may positively modulate the im-
munological and clinical efficacy of DC vaccination.
In particular, preemptive IFN-α should:

– (1.) lead to the production of more highly
immunogenic monocyte-derived DC;

– (2.) mobilize peripheral DC precursors, thus
enhancing leukapheresis yields;

– (3.) positively modulate the immunogenicity of
melanoma cells in vivo.

Immunomodulating effects of radiotherapy
Ionizing radiation therapy (RT) is known for its capacity
to kill cancer cells and other cells within the tumor stroma,
including endothelial cells and intratumoral lymphocytes
[27]. Although tumor cells killed by RT may represent a
suitable source of antigens for DC uptake and presentation
to T cells, it is widely accepted that optimal activation of
T cells by DC can be achieved only in the presence of
inflammatory or “danger” signals. On this basis, the hy-
pothesis that exposure to ionising radiation (IR) generates
a proinflammatory “danger” microenvironment supports
claims made of a strong synergy between radiotherapy
and immunotherapy. In particular, IR induces the secre-
tion of the pro-inflammatory cytokines IL-1β and TNF-α
in both animal cancer models and cancer patients [28,29].
Moreover, IR upregulates the expression of Fas/CD95
receptor and NKG2D-L in cancer cells [30], encouraging
the recognition and killing of the “altered self” and MHC-I
and co-stimulatory molecules, which leads to a more ac-
curate recognition by immune effectors [31]. Finally, RT
can facilitate the homing of both antigen-presenting and
effector T cells to the tumor bed by eliciting inflammatory
signals and changes in extracellular matrix proteins and
by inducing the expression of adhesion molecules by
endothelial cells in the tumor microenvironment [32,33].
Demaria S. et al. showed that irradiation of a tumor xeno-
graft in a murine model protected against rechallenge
from the same tumor cells outside the irradiation field.
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This anti-tumor effect was probably the result of a specific
immune response as it is not observed in immunodeficient
nude mice. It would seem to be tumor-type specific i.e.
(growth of a second graft of a different cell line is not
affected by irradiation of the first graft) and is synergistic
with administration of the Flt-3 (FMS-like tyrosine kinase
3) ligand. Flt-3 alone (no RT) has no effect on the second
graft, probably because of a nonspecific immunity boost
provided by the Flt-3 ligand. Overall, these data suggest
that RT delivered to a tumor site may also prime the im-
mune system against related tumor cells at some distance
from the irradiation field (“abscopal effect”) and that, in
the absence of additional immune system stimulation, the
radiation-induced immune response has no clinical effect.
Accordingly, the combined use of DC vaccination and
RT with “immunological” intent should theoretically
strengthen the effect of the vaccine by acting as an in
situ boost in which tumor antigens are released and
captured by intratumoral DC in a microenvironment
positively conditioned by ionising radiation [34-37].

Description of the investigational product
Since 2001, IRST Somatic Cell Therapy Laboratory has
produced an advanced medicinal product in the form of a
therapeutic vaccine composed of autologous DC pulsed
with autologous tumor lysate or homogenate for patients
with metastatic melanoma or kidney cancer [15,16,38-40].
The vaccine can be administered to patients either imme-
diately after preparation or after thawing of cryopreserved
aliquots. Details on manufacturing methods are provided
in Additional file 1.

Freshly-prepared vaccine
Each vaccine dose is prepared from patients’ monocytes
obtained by leukapheresis. After leukapheresis, a part of
the monocytes obtained are cultured and the remainder
is cryopreserved in aliquots to be used for the manufacture
of subsequent vaccine doses. Monocytes are cultured for
six days in serum-free, GMP (Good Manufacturing Prac-
tice) certified medium supplemented with granulocyte-
macrophage colony-stimulating factor (GM-CSF) and
interleukin-4 (IL-4) to obtain immature dendritic cells
(iDC). These immature DC are pulsed with autologous
lysate or homogenate prepared from surgically removed
metastatic lesions. After pulsing, DC are then matured
for 48 hours in the presence of a cytokine cocktail
(TNF-α, IL-1β, IL6, and PGE2). Mature DC (mDC) are
then collected, washed, counted and re-suspended in
sterile saline (total 7–15 × 106 cells) for immediate
intradermal administration to patients.

Cryopreserved vaccine
The vaccine is produced from the whole leukapheresis
product according to the previously described protocol.
After the maturation step, pulsed mDC are collected,
washed, counted, re-suspended in sterile saline, aliquoted
(total 7–15 ×106 cells) and cryopreserved by automated
freezing. Before administration, the mDC are thawed,
washed, re-suspended in saline and immediately injected
intradermally into patients.

Delayed-type hypersensitivity test (DTH)
DTH testing is a classic method for measuring cellular
immune reactivity. This technique involves the intrader-
mal administration of an antigen preparation and the
monitoring of the degree of erythema and induration pro-
duced 24–48 hours after injection. The response reflects
antigen-specific recruitment and the activation of CD4+
to release T-helper 1 cytokines (in particular, IFN-α) and
CD8+ effector T cells into the injection site [41,42]. In our
experience, as in that of other groups, a positive response
to the DTH test performed with soluble antigen (in our
studies with ATL) after vaccination with DC in metastatic
melanoma patients was strongly correlated with a better
clinical outcome [15-18]. DTH testing using another
antigen, KLH, has been studied and its positivity has
also been found to be associated with improved clinical
outcome in vaccinated patients. We use KLH as an im-
munological adjuvant in the preparation of our DC
vaccine and have seen that positive DHT testing to this
protein is a reliable indicator of immunologic competence
in vaccinated patients. DTH testing does not require
extensive training or the use of costly equipment and can
easily be performed at the patient’s bedside. All these
features make it a feasible, low-cost immunomonitoring
method that permits the evaluation of immunologic effi-
cacy in a clinical trial setting.

Trial design and statistical considerations
This is a phase II, randomized, open-label trial aimed at
assessing whether different external immunostimulant
conditions, i.e. preleukapheresis IFN-α and external RT
to one target lesion, enhance, alone or in combination,
the immunological efficacy of autologous DC loaded
with tumor lysate or homogenate in metastatic melanoma
patients. The design follows the concept of “proof-of-
principle” studies [43,44] in which the rationale for a given
treatment or treatment combination is explored by
analyzing disease and/or treatment-specific biological pa-
rameters. The study has been approved by the Local Ethics
Committee (ClinicalTrails.gov identifier: NCT01973322)
and will be carried out in compliance with the Helsinki
declaration.
Therapeutic cancer vaccines are a heterogeneous group

of complex biologics with distinctly different clinical
characteristics which require the development of new
clinical paradigms. Hoos et al. proposed the use of a
“proof-of-principle” trial which would include patients
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in a metastatic setting without rapidly progressive dis-
ease to allow vaccines to have sufficient time to induce
biological activity and which would also incorporate
immune and molecular markers.
Our objectives include the demonstration of biological

activity as proof-of-principle, defined as any effect of the
vaccine combination on the target disease using biological
markers as study endpoints (immunological response).
We also aim to identify which, if any, external immu-
nostimulant conditions give the best result in terms of
biological activity, i.e. improving the ability of the DC vac-
cination to induce clinically effective anti-tumor immune
responses. We chose the randomized design to select the
most promising regimen for further evaluations (phase II
or phase III trials) [45,46]. This approach, based upon the
assumption that immunotherapy is only expected to be
effective in patients showing efficient induction of anti-
tumor immune responses (“targeted endpoint”), allows us
to reduce the number of patients required to evaluate the
potential efficacy of an experimental treatment.
Randomization guarantees the avoidance of selection

bias, excluding the preferential inclusion of patients in
certain treatment arms. This approach, whilst not identify-
ing which factors contribute to immunogenicity or which
regimens are significantly better than others, will, however,
highlight a treatment or treatment combination that war-
rants further investigation. The sample size per treatment
must be large enough to ensure, with strong probability,
that if one treatment or treatment combination is superior
to all others by a specific amount, then it will have the
largest sample mean and will therefore be selected. In
particular, if one of the external immunostimulant condi-
tions investigated shows higher clinical activity than that
observed in the other conditions by a predetermined
amount, that condition will be superior to the others with
a given probability and will merit further clinical investiga-
tion. By enrolling six patients in each treatment arm, we
will obtain a 90% probability of correctly selecting the best
investigated external immunostimulant condition if the
superior arm, if present, has a true expected outcome that
is at least 15% higher in terms of irDCR (immune-related
disease control rate) than that of the inferior arms [46].
Otherwise, the immunological primary endpoint (im-
munological efficacy) will guide the choice of treatment
combination to further develop using the same method. If
a treatment or a combination of treatments is not identi-
fied as superior, the vaccine regimen (without external
immunostimulant conditions) will be considered for
further investigation.

Primary objectives
Clinical objective
To select the regimen that has the best irDCR defined as
the proportion of subjects with an immune-related best
overall response (irBOR) of confirmed immune-related
complete response (irCR), immune-related partial response
(irPR) or immune-related stable disease (irSD). The irDCR
will be compared in the different treatment arms to identify
possible differences in clinical activity between the different
external immunostimulant conditions combined with the
autologous tumor lysate-loaded DC vaccine.

Immunologic objective
The immunologic efficacy of the different external
immunostimulant conditions used in combination with
the autologous tumor lysate-loaded DC vaccine will be
assessed by DTH development against KLH and tumor
homogenate and also by IFN-γ-ELISPOT analysis of
circulating effectors specific for tumor antigens known to
be expressed in melanoma, as described in the “Immuno-
logic endpoint assessment” section.

Secondary objectives
Clinical objectives
To define further the clinical efficacy of the different
treatment arms, including an analysis of OS (as indicated
by median survival and survival rates at 1- and 2-year
follow-ups), immune-related time to progression (irTTP),
immune-related overall response rate (irORR), immune-
related duration of response (irDOR), immune-related time
to response (irTTR) and immune-related progression-free
survival (irPFS). All time-dependent clinical endpoints
(irTTP, OS) will be estimated using the Kaplan-Meier
method and the log rank test will be performed on dif-
ferences in these endpoints across the treatment arms.
Frequency tables will be created for all categorical variables.
Continuous variables will be presented using mean and
standard deviation or median and range. Given the explora-
tive intent of the study and the limited sample size, we are
aware that we may be exposed to a high level of false posi-
tive results. Unless otherwise indicated, the analysis of
demography and baseline characteristics will be performed
on all randomized patients. Demographic and laboratory
results will be summarized using descriptive statistics.

Immunologic objectives
Secondary objectives also include the evaluation of the ef-
fects of preleukapheresis IFN-α on DC yield and potency,
and of maturation-induced TEM8 expression on DC:

a) DC yield: the number of DC obtained per ml of
blood processed by leukapheresis will be recorded at
each leukapheresis and compared between the
different treatment arms (IFN-α vs no-IFN-α);

b) DC potency: DC vaccine potency will be analyzed
using an ELISPOT-based version of the COSTIM
assay which will evaluate the co-stimulatory ability
of dendritic cells;
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c) TEM-8 upregulation observed upon DC maturation
in non-immunoresponsive patients will be evaluated
by qRT-PCR and the distribution of TEM-8 mRNA
iDC: mDC ratio will be compared between the
different treatment arms (IFN-α vs no-IFN-α). The
percentage of patients in each treatment group
reporting an adverse event (AE) up to 30 days after
vaccination will be tabulated with 95% confidence
intervals according to type of AE. The overall rate of
grade 3–4 AEs will be calculated on the basis of
treatment group. In addition, summary statistics of
clinically significant laboratory abnormalities will be
tabulated.

Overview of study phases
Screening
Before entering the study, patients will be required to
undergo tumor tissue collection according to Good
Manufacturing Practice (GMP) guidelines, as per current
Standard Operating Procedures of the IRST Laboratory of
Somatic Cell Therapy (STC Lab) (Figure 1). Tumor tissue
will be stored in the Therapeutic Cell Bank of the STC
Lab until use for vaccine manufacturing. Only patients
from whom autologous tumor tissue has been collected
by the STC Lab under GMP will be eligible for the study.
After informed consent has been obtained, patients will
enter the screening phase (tumor staging and clinical and
laboratory assessments) to determine their eligibility for
the trial. In particular, patients must have at least one
measurable and one non-measurable lesion.

Leukapheresis and vaccine manufacturing
At the end of the screening phase, patients will be ran-
domized and will enter the leukapheresis and vaccine
manufacturing phase. Each patient will be assigned to
one of the following arms:

(1.) three daily doses of 8 Gy - 12 Gy radiotherapy
delivered to one non-index metastatic field (optional
to one additional field) between vaccine doses 1 and
2 and between doses 7 and 8, using IMRT-IMAT
techniques;

(2.) daily 3 MU subcutaneous IFN-α for 7 days before
leukapheresis;

(3.) both 1 and 2 external immunostimulant conditions;
(4.) neither 1 nor 2 external immunostimulant

conditions.

At least six patients eligible for treatment will be enrolled
per arm.

Induction
After vaccine preparation, the patients will start treatment
in the induction phase. Before the first dose of the vaccine
(day 1), patients will undergo blood sampling for
immunological markers (quantification of circulating
tumor-specific immune effectors) and the baseline DTH
test. Three MU IL-2 will be administered subcutaneously
daily for five days starting from the second day after each
vaccine dose. Vaccine doses will be given intradermally in
two sites close to inguinal or axillary lymph node stations
that have not been the site of previous surgical exeresis.
The first dose (wk1) will consist of the freshly prepared
vaccine, whereas cryopreserved aliquots will be used for
all other doses. The second dose will be administered after
three weeks (wk4) to allow for the completion of quality
assurance/quality control (QA/QC) assessments on the
cryopreserved vaccine batches that will be used across all
further phases. The remaining two doses of the induction
phase will be administered after a 2-week interval (wk6
and wk8). At wk2, patients randomized to receive RT will
undergo the planned treatment: one non-measurable (or
non-index measurable, if available) lesion will be irradiated
using IMRT-IMAT techniques to facilitate tumor antigen
release and and antigen uptake by intratumoral DC under
“danger” conditions created by ionising radiation, thus
potentially boosting immunization induced by the DC
vaccine. The remaining measurable lesion (s) will be
used as an index lesion (s) to evaluate objective response
according to irCR.. The induction phase will end with
tumor restaging, blood sampling for immunological bio-
markers and DTH test (the day before wk12 vaccine
dose).

Maintenance
Patients showing irCR, irPR or irSD or non-confirmed
irPD will enter the maintenance phase during which they
will receive further vaccine doses at four-week intervals
until irPD is confirmed, for up to a maximum of 14
vaccinations (wk48). Tumor assessments, blood sampling
for immunological biomarkers and DTH tests will be per-
formed every 12 weeks (wk24, 36 and 48).
In the event of vaccine shortage, patients will undergo

additional leukapheresis at least two weeks after the last
RT (according to treatment arm) and at least one week
before the next vaccine dose: patients assigned to the
IFN-α arms will repeat this treatment for seven days be-
fore leukapheresis with the same schedule and dosage.
Patients undergoing additional leukapheresis must have
negative tests for HBV, HCV, HIV and treponema not
dating back more than 30 days. This procedure will be
performed to facilitate the completion of the QA/QC
assessment on the new cryopreserved vaccine batch. At
week 22 (between vaccine doses V7 and V8), patients
randomized to RT can optionally repeat this treatment
on a non-index, not previously irradiated lesion, if available.
On the basis of irCR, patients showing irPD will continue
treatment until confirmation of progression. Patients with
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Figure 1 Induction and maintenance phase schedule.
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confirmed irPD showing positive DTH may, at the physi-
cian’s discretion, continue treatment until the next tumor
assessment. If, at the next re-staging, further progression
is observed, these patients will be discontinued.

Study population
Patients with unresectable stage III or stage IV melan-
oma with at least two measurable lesions who may or
may not have undergone previous lines of specific
therapy (i.e. chemotherapy, immunotherapy, targeted
therapy, etc.).

Inclusion criteria

(1.) Signed written informed consent: patients must be
willing and able to give written informed consent
and this must be provided before starting the
screening procedure;
(2.)Availability of autologous tumor tissue that fulfils
acceptance criteria

(3.) Patients must have histologically or cytologically
confirmed malignant unresectable stage III or stage
IV melanoma (any type considered);

(4.) Patients must have a minimum of two lesions,
one of which must be accurately measurable in
two perpendicular dimensions (at least one
diameter >20 mm and the other dimension
>10 mm) using or at least 10 × 10 mm using
spiral CT scan;

(5.) Patients carrying BRAF mutation-positive
melanoma must have received previous vemurafenib
unless they are not eligible for or have refused
treatment;

(6.) Patients treated with previous first-line therapy
must have received ipilimumab unless they are not
eligible for or have refused treatment;
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(7.) Pre-treated brain metastases that have been
clinically stable for at least six months and that do
not require corticosteroids are allowed;

(8.) ECOG performance status 0–1;
(9.)Negative screening tests for HIV, HBV, HCV and

syphilis not dating back more than 30 days before
any of the GMP-regulated activities required are per-
formed (leukapheresis, collection of tumor biopsies
to be used for tumor lysate/homogenate
preparation);

(10.) Prior lines of chemotherapy, immunotherapy or
biological therapy (e.g. inhibitors of BRAF or c-Kit,
ipilimumab, etc.) for advanced disease are allowed
(patients must have completed prior treatments at
least four weeks before the first vaccine dose);

(11.)Males and females aged 18–70 years;
(12.) Females of childbearing potential (WOCBP) must

use an adequate method of contraception to avoid
pregnancy throughout the study and for eight weeks
after the study to minimize the risk of pregnancy;

(13.) Patients must have normal organ and marrow
function as defined below:
– leukocytes >1,500/μL;
– absolute neutrophil count >1,000/μL;
– platelets >80,000/μL;
– total bilirubin ≤ 2 × ULN;
– AST (SGOT)/ALT (SGPT) <2.5 × ULN;
– creatinine ≤ 2 mg/dl.

Exclusion criteria
Participants will not be eligible for the study if ANY of
the following apply:

(1.) Patients with positive tests for HCV, HBV, HIV or
syphilis (specific blood testing must be performed no
more than 30 days prior to any GMP regulated
activity (leukapheresis and collection of tumor
biopsies to be used for tumor lysate/homogenate
preparation);

(2.) Patients with unresectable or metastatic BRAF V600
mutation-positive melanoma eligible for vemurafenib
may not be enrolled for first-line treatment;

(3.) Patients eligible for ipilimumab treatment can only
be given the drug as first-line treatment;

(4.) Patients who have had chemotherapy or
radiotherapy in the four weeks prior to entering the
study or those who have not recovered from adverse
events caused by treatment administered more than
four weeks earlier;

(5.) Participation in another clinical trial with any
investigational agent in the 30 days prior to study
screening;

(6.) Patients with known progressing and/or
symptomatic brain metastases;
(7.)Uncontrolled intercurrent illness including, but not
limited to, ongoing or active infection, symptomatic
congestive heart failure, unstable angina pectoris,
cardiac arrhythmia or psychiatric illness/problems in
social situations that would limit compliance with
study requirements (at the physician’s discretion);

(8.)Other known malignant diseases in the patient’s
medical history with a disease-free interval of less
than three years (except for previously treated basal
cell carcinoma and in situ carcinoma of the uterine
cervix);

(9.)Any contraindication, in the opinion of the blood
transfusionist, to undergo leukapheresis (e.g. severe
anaemia, thrombocytopenia, oral anticoagulant
therapy).

Clinical endpoint assessments
Tumor assessment
This study will use immune-related response criteria (irRC)
[47], which is a further refinement of modified WHO
(World Health Organization) criteria, to better describe
tumor response in subjects undergoing immunotherapy
(Table 1). irRC were created because of the natural history
of clinical response observed in subjects treated with im-
munological agents such as ipilimumab, which differ from
those experienced by individuals receiving other classes of
anti-cancer agents.
The main differences between irRC criteria and conven-

tional criteria are:

– new measurable lesions are incorporated into the
tumor burden (e.g. added to the index lesions) and
do not define progression unless the total
measurable tumor burden increases by the required
amount of 25%;

– new non-measurable lesions (including bone lesions)
are not considered progression if the total measurable
tumor burden is stable or shrinking;

– changes in non-measurable lesions only contribute
to the definition of irCR;

– disease progression must be confirmed.

Immunologic endpoint assessment
Immunologic efficacy
Immunologic efficacy, i.e. the ability of the different
treatments to efficiently induce an anti-tumor immune
response, will be measured by the DTH test against ATL
and KLH after at least four vaccine induction doses.
DTH testing will be performed in all patients on day −1
(pre-treatment DTH, which showed no reactivity in the
vast majority of patients evaluated in our previous studies),
and one day before the 5th, 8th, 11th and 14th vaccine dose
(post-treatment DTH). Scalar doses (100, 50, 20, 10 and
5 μg) of autologous tumor lysate and KLH (pulsed into DC



Table 1 Immune-response response criteria (irRC)

Index lesions Non-index
lesions

New measurable
lesions

New non-measurable
lesions

% Change in
tumor burden

irRC-overall
response

CR CR No No −100% irCR

PR Any Any Any ≥ -50% irPR

PR Any Any Any < -50% to < +25% irSD

PR Any Any Any ≥ +25% irPD

SD Any Any Any < -50% to < +25% irSD

SD Any Any Any ≥ +25% irPD

PD Any Any Any ≥ +25% irPD

SD Any Any Any < -50% to < +25% irSD

SD Any Any Any ≥ +25% irPD

PD Any Any Any ≥ +25% irPD

irRC: immune-related response criteria; PR: partial response; SD: stable disease; PD: progressive disease.
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together with tumor lysate as an adjuvant) will be used.
The diameter of the induration/erythema observed after
24 hours will be recorded according to the following scale:
0–5 mm grade 1, 6–10 mm grade 2, 11–20 mm grade
3, >21 mm grade 4. As DTH reactivity to lower concen-
trations of the antigen (s) is closely related to more intense
antigen-specific immune response, the score results will
be normalized against the concentration itself and trans-
formed into a 0–80 scale for analysis purposes.
The best result obtained for each patient at any of the

post-treatment DTHs, either for ATL or KLH, will be
taken into account for data analysis (best normalized
score). The best normalized score distributions across
the different treatment arms will be evaluated according
to non-parametric tests and, if the differences are found
to be statistically significant, the specific primary objective
will be considered fulfilled.

ELISPOT analysis
IFN-γ-ELISPOT assay will be performed using a commer-
cial kit (Tema Ricerca, Bologna, Italy) according to the
manufacturer’s instructions. Total PBMCs (105 cells/well)
will be used as responding cells and stimulated with
1 μg/mL of peptide covering the entire set of tumor
antigens known to be expressed in melanoma (tyrosinase,
MART1, MAGEA3, MAGEA1, gp100, NY-ESO, SOX2
and survivin; JPT GmbH, Germany). Plates will be evalu-
ated by a computer-assisted ELISPOT reader (Eli.Expert,
A.EL.VIS, Hannover, Germany). The patients’ DTH scores
will also be evaluated in combination with IFN-γ-
ELISPOT analysis of tumor antigen-specific circulating
effectors in the different treatment arms with the same
time schedule. In particular, if no significant difference
across the treatment arms is found for DTH testing, the
distribution of the fold increase (i.e. the post-vaccine:
pre-vaccine ratio values) in Spot Forming Cells (SFC)/
100,000 total PBMC recorded after at least four vaccine
doses compared to pre-vaccine values, obtained by ELI-
SPOT analysis and after subtraction of SFC observed in
non-stimulated PBMC, will be evaluated using the Stu-
dent’s t-test across the different treatment arms. If differ-
ences are found to be statistically significant (significance
level 0.05), the specific primary objective will be consid-
ered fulfilled.

Assessment of the effects of preleukapheresis IFN-α on
vaccine yield
The total number of vital ATL-loaded DC obtained from
each leukapheresis will be measured by vital dye staining
with trypan blue and microscopic counting after in vitro
differentiation and maturation, according to the specific
SOP currently adopted by the STC Lab. The value re-
corded will then be normalized to the volume of blood
processed by leukapheresis (expressed in millilitres) to
obtain the number of vital DC/ml of in processed
blood. The distribution of vital DC number/ml of blood
processed by leukapheresis observed in the different treat-
ment arms (IFN-α vs no-IFN-α) will then be evaluated
using the Student’s t-test and, if differences are found to
be statistically significant, the specific primary objective
will be considered fulfilled. Additional leukaphereses
performed due to vaccine shortage will not be included
in the analysis.

Assessment of the effects of preleukapheresis IFN-α on
DC potency
Immunologic potency analysis
The co-stimulatory ability of the vaccine will be assessed
with a modified version of the COSTIM assay [48] utilizing
IFN-γ as a read-out system which has been used in our la-
boratory to assess the equivalence of freshly-made vs cryo-
preserved vaccine (data not shown). This GMP-validated
method relies on the capacity of co-stimulatory signals
provided by DC, per se unable to fully activate responder
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T cells, to trigger a proliferative response or cytokine
secretion in allogeneic T cells stimulated with substimu-
lating doses (0.005 mg/ml) of the anti-CD3 antibody
OKT3. Briefly, 1×105 reference T cells are co-cultured in
quadruplicate with DC in IFN-γ ELISPOT plates for
24 hours at a T:DC ratio of 10:1, in the presence of
0.005 mg/ml OKT3. T cells cultured in the presence of
0.005 mg/ml OKT3 or DC are used as negative control.
To ensure intra- and inter-assay reproducibility, reference
T cells from at least 3 healthy donors are used for each de-
termination. After a 24-hour incubation at 37°C in 5%
CO2, plates are developed according to the manufacturer’s
instructions and evaluated by a computer-assisted ELI-
SPOT reader (Eli.Expert, A.EL.VIS GmbH). The distri-
bution of SFC numbers across the different treatment
arms (IFN-α vs no-IFN-α) will be evaluated according
to the Student’s t-test and, if the differences are found to
be statistically significant, the specific primary objective
will be considered fulfilled. For this endpoint, only the first
leukapheresis will be included in the analysis.

Assessment of the effects of preleukapheresis IFN-α on
TEM-8 expression
We demonstrated in previous works that patients who
show upregulation of TEM-8 in DC after maturation (as
assessed by flow cytometry and real-time PCR) do not
develop anti-tumor immunity after DC vaccination. In
order to assess this specific objective, total RNA will be
extracted from immature and mature DC (5 × 106 cells)
and reverse transcribed to cDNA. Quantitative real-time
PCR will be then performed using primer sets that cover
all human TEM-8 splicing variants; appropriate house-
keeping genes will also be amplified as normalization
controls. The ratio between TEM-8 mRNA expression
(normalized against housekeeping genes) in monocytes
and in mDC will then be calculated. The distribution of
the TEM-8 mRNA iDC:mDC ratio observed in the
different treatment arms (IFN-α vs no-IFN-α) will be then
evaluated using the Student’s t-test. If the differences are
found to be statistically significant, the specific primary
objective will be considered fulfilled.

Sample size
This is a “randomized selection design” study based on
the assumption that immunotherapy is expected to be
effective only in patients showing efficient induction of
antitumor immune responses (“targeted endpoint”) [49].
The Steinberg and Venzon approach permits the researcher
to select one among a number of different treatment arms
as being worthy of further evaluation in a subsequent study.
This method requires an adequate gap in the number of
immune responses among different arms be observed in
order to limit the probability that the selected arm is, in
actual fact, inferior to the others. Assuming an error
probability of selecting an inferior arm of 10%, a gap of
2 patients with an immune response out of a total of 6
enrolled patients per arm is sufficient, regardless of the
proportion of irOR expected in each arm, to show that
the difference between the highest probability of response
and the best response of the remaining arms is 15%. If the
gap is inferior to 2 patients, no treatment arm can be con-
sidered better than another and new immunostimulating
therapies will have to be identified to combine with the
DC vaccine.

Discussion
The recent development of targeted agents and new drugs
has partially changed the clinical course of advanced
melanoma patients. Toxicities from BRAF inhibitors or
anti-CTLA-4 antibodies for melanoma, albeit low grade,
are continuous and chronically impact on quality of life.
Furthermore, some toxicities with an initially mild presen-
tation can progress, if not rapidly recognized, into severe
and potentially life-threatening events [50,51]. Conversely,
the use of vaccines in melanoma patients has been histor-
ically associated with negligible toxicity, although clinical
results are disappointing and somewhat contrasting. How-
ever, encouraging results have been reported in several
studies of vaccination with dendritic cells, albeit obtained
on small series of patients.
In this context we recently reported the results from a

phase II clinical study of DC-based vaccine in metastatic
melanoma in which 55.5% of evaluable patients showed
a clinical benefit (PR + SD), with very low toxicity [15,16].
Like us [16,18], other groups [17] also observed that,
patients who developed anti-tumor immunity after vaccin-
ation experienced a better clinical outcome. In particular,
we saw that individuals developing delayed type hypersen-
sitivity (DTH) against autologous tumor lysate or KLH
after at least four courses of the vaccine showed a median
OS of 22.9 months compared to 4.8 months for DTH-
negative cases (Log-rank test, p = 0.007) [16].
These results prompted us to use combination treat-

ments aimed at improving the rate of patients showing
positive immunization after vaccination. In particular,
we observed that all those who underwent therapy with
low-dose IFN-α in the month before starting DC vac-
cination (unpublished data) showed positive immun-
isation after the first induction doses, suggesting that
IFN-α priming, performed in vivo before leukapheresis,
may enhance the immunostimulatory profile of DC.
Moreover, IFN-α priming may also have a “mobilizing”
activity on DC precursors: it was recently been reported
that 1–3 MU subcutaneous IFN-α enhances the propor-
tion of circulating CD14+ and CD14 + CD16+ monocytes
in both healthy donors and melanoma patients [26]. On
this basis, the administration of IFN-α before leukapheresis
may positively modulate the immunological and clinical
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efficacy of DC vaccination. In addition to the potential
for preleukapheresis IFN-α to improve the immunological
efficacy of monocyte-derived DC vaccine, a synergism
between immunotherapy and radiotherapy (the abscopal
effect) has hypothesized in which radiotherapy “immunizes”
the patient against cancer cells, converting the irradiated
tissue into an in situ vaccine. Although, in some cases,
radiotherapy alone can induce immunological memory
protection, in others it loses its initial efficacy when recur-
rence occurs. Overall, findings from the literature suggest
that radiotherapy may also act as an “immune response
modifier” which can correct the immunosuppressive net-
work created by tumor cells. In that respect, radiotherapy
would seem to be capable of recovering the cancer-
specific immune response after failure of immunotherapy,
of boosting the naturally occurring anti-tumor immune
response, and cooperating with cancer vaccines to facili-
tate the priming of a non-immunodominant response
[52,53].
We designed a randomized, proof-of-principal study in

which preleukapheresis radiotherapy and/or IFN-α are
added to the DC vaccine with the aim of enhancing the
vaccine-induced tumor immune response and, in doing
so, of potentially improving survival. Moreover, these
combination therapies should, in theory, maintain the
same low toxicity profile observed in our previous studies.
Dose and fraction of radiotherapy and the correct sequen-
cing of therapies will also be evaluated. The identification
of an effective treatment regimen could be used in a phase
III trial or be applied to clinical practice.
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