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Abstract

Background: Triple-negative breast cancer (TNBC) is an aggressive clinical subtype of breast cancer that is
characterized by the lack of estrogen receptor (ER) and progesterone receptor (PR) expression as well as human
epidermal growth factor receptor 2 (HER2) overexpression. The TNBC subtype constitutes approximately 10%-20%
of all breast cancers, but has no effective molecular targeted therapies. Previous meta-analysis of gene expression
profiles of 587 TNBC cases from 21 studies demonstrated high expression of Wnt signaling pathway-associated genes in
basal-like 2 and mesenchymal subtypes of TNBC. In this study, we investigated the potential of Wnt pathway inhibitors
in effective treatment of TNBC.

Methods: Activation of Wnt pathway was assessed in four TNBC cell lines (BT-549, MDA-MB-231, HCC-1143 and
HCC-1937), and the ER* cell line MCF-7 using confocal microscopy and Western blot analysis of pathway components.
Effectiveness of five different Wnt pathway inhibitors (iCRT-3, iCRT-5, iCRT-14, IWP-4 and XAV-939) on cell proliferation
and apoptosis were tested in vitro. The inhibitory effects of iCRT-3 on canonical Wnt signaling in TNBC was evaluated by
quantitative real-time RT-PCR analysis of Axin2 and dual-luciferase reporter assays. The effects of ShRNA knockdown of
SOX4 in combination with iCRT-3 and/or genistein treatments on cell proliferation, migration and invasion on BT-549
cells were also evaluated.

Results: Immunofluorescence staining of B-catenin in TNBC cell lines showed both nuclear and cytoplasmic localization,

indicating activation of Wnt pathway in TNBC cells. iCRT-3 was the most effective compound for inhibiting proliferation
and antagonizing Wnt signaling in TNBC cells. In addition, treatment with iCRT-3 resulted in increased apoptosis in vitro.

inhibition of cell proliferation and induction of apoptosis.

TNBC patients.

Knockdown of the Wnt pathway transcription factor, SOX4 in triple negative BT-549 cells resulted in decreased cell
proliferation and migration, and combination treatment of iCRT-3 with SOX4 knockdown had a synergistic effect on

Conclusions: These data suggest that targeting SOX4 and/or the Wnt pathway could have therapeutic benefit for
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Background

Breast cancer is the most common malignancy and the
second leading cause of cancer death among women
in the United States. About 226,870 new cases of
breast cancer and 39,510 breast cancer deaths are esti-
mated to occur among US women in 2012 [1]. It is a
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heterogeneous disease comprised of distinct subtypes
based on clinical, pathological, and genetic findings [2].
One of these subtypes is triple-negative breast cancer
(TNBC), which is characterized by lack of expression
of estrogen receptor (ER) and progesterone receptor
(PR) as well as absence of human epidermal growth factor
receptor 2 (HER2) overexpression [3]. TNBC accounts for
approximately 10%-20% of all breast cancer cases [3-5].
TNBC patients exhibit a more aggressive clinical course,
and have a higher rate of distant recurrence and a poorer

© 2013 Bilir et al,; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:cmoreno@emory.edu
http://creativecommons.org/licenses/by/2.0

Bilir et al. Journal of Translational Medicine 2013, 11:280
http://www.translational-medicine.com/content/11/1/280

prognosis than women with other breast cancer subtypes
[3,6,7]. Population-based studies identified several risk
factors for TNBC including young age at diagnosis,
African-American race, high body mass index, young
age at menarche, high parity, young age at time of first
birth, and lack of breast feeding [3-5]. TNBC tumors
are typically larger in size and of higher grade [8]. Due
to the lack of well-defined molecular targets in TNBC,
chemotherapy remains the mainstay of systemic treatment
for this disease [9].

Cluster analysis of gene expression profiles from 587
TNBC cases identified six distinct subtypes, including two
basal-like, an immunomodulatory, a mesenchymal, a
mesenchymal stem-like, and a luminal androgen receptor
subtype [10]. Signaling pathway abnormalities implicated
in the pathogenesis of TNBC include DNA damage re-
sponse, apoptosis, proliferation, epithelial-mesenchymal
transition, immune response, and angiogenesis [10,11].

Several components of the Wnt pathway as well as the
Myc pathway are upregulated in the basal-like 2 and
mesenchymal subtypes of TNBC such as WNT5A, SOX11,
SOX4, LRP6, FZD4, and FZD7 [10,12,13]. Wnt signaling
regulates cell proliferation, survival, and differentiation, and
plays key roles in embryonic development and tumorigen-
esis [14-17]. In the absence of Wnt ligands, cytoplasmic
[B-catenin is recruited into a destruction complex that
consists of adenomatous polyposis coli (APC), glycogen
synthase kinase-3 (GSK3p), axin, and casein kinase 1
(CK1). This complex formation induces the phosphoryl-
ation of B-catenin at the amino terminus by GSK3p and
CK1, resulting in the ubiquitination and the subsequent
degradation of PB-catenin [16-19]. When Wnt ligands are
secreted, they bind to their receptors, low-density lipopro-
tein receptor-related protein 5/6 (LRP5/6) and Frizzled
(FZD), to activate the Wnt signaling pathway. This binding
leads to the recruitment of the scaffolding protein Dishev-
elled (Dsh) and axin to the cell membrane, and inactivation
of the destruction complex. Inhibition of the degradation of
[B-catenin allows the cytoplasmic stabilization and trans-
location of the protein to the nucleus where it binds to
members of the T-cell factor/lymphoid enhancing factor
(TCF/LEF) family of transcription factors, and induces the
expression of Wnt target genes. Sex-determining region
Y-box 4 (SOX4), which is a highly conserved developmen-
tal transcription factor, has been implicated in playing an
important role in Wnt signaling pathway in cancers [20,21].
SOX4 contains a high-mobility group DNA-binding
domain that is structurally related to TCF/LEFs [22].
Sinner et al. demonstrated that SOX4 stabilizes -catenin,
and enhances Wnt signaling pathway in colon carcinoma
[23], while Scharer et al. demonstrated cooperativity
between SOX4 and [-catenin in prostate cancer cells [21].
SOX4 was also shown to have a role in Wnt signaling in
malignant melanoma by regulating 3-catenin [24,25].
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Genistein, the major isoflavone in soybean, has been
shown to have anticancer effects [26-28]. Genistein treat-
ment of prostate cancer cells upregulates the expression
of GSK3p, enhances GSK3[ binding to B-catenin, and
increases -catenin phosphorylation, resulting in inacti-
vation of Wnt/B-catenin and inhibiting cancer growth
[29,30]. Genistein was also shown to diminish Wntl-
induced proliferation and decrease the expression of Wnt
targets, namely c-myc and cyclin D1 [31,32]. Genistein also
suppresses [-catenin transcriptional activity in colorectal
carcinoma cells, and reduces cell proliferation through
theWnt pathway in mesenchymal stromal cells isolated
from human umbilical cord [33,34].

Other recently identified inhibitors of the Wnt pathway
include the inhibitors of catenin-responsive transcription
(iCRT) compounds, iCRT-3, iCRT-5, and iCRT-14, which
were identified in an RNAi modifier screen [35]. The
Novartis compound XAV-939 stimulates -catenin degrad-
ation by inhibiting Tankyrase and thereby stabilizing axin
[36]. The IWP-4 compound was identified in a small mol-
ecule screen for Wnt antagonists and inhibits Porcupine,
the membrane-bound acyltransferase that is essential to
the pamitoylation of Wnt ligands [37]. In this study, we
investigated the potential of these Wnt pathway inhibitors
in effective treatment of TNBC cells. In addition, we
tested the effects of reduced SOX4 levels in combination
with Wnt inhibitor and/or the soy isoflavone genistein
treatment on cell proliferation, migration and invasion on
TNBC cells. We found that iCRT-3 and SOX4 knockdown
have potential for therapy of TNBC.

Methods
Cell culture and reagents
MCEF-7 and TNBC cell lines (BT-549, MDA-MB-231,
HCC-1143 and HCC-1937) were obtained from American
Type Culture Collection (Manassas, VA). MCF-7 and
MDA-MB-231 cells were maintained in DMEM (Cellgro,
Manassas, VA) while BT-549, HCC-1143 and HCC-1937
cells were grown in RPMI 1640 medium (Gibco, Grand
Island, NY). Both media were supplemented with 10% fetal
bovine serum (FBS) (Atlanta Biologicals, Lawrenceville,
GA), 2 mM L-Glutamine (Gibco, Grand Island, NY) and
50 U/ml Penicillin-50 pg/ml Streptomycin antibiotics
(Gibco, Grand Island, NY). Medium for BT-549 was also
supplemented with 0.023 IU/ml bovine insulin (Sigma-
Aldrich, St. Louis, MO). Cell lines were cultured in a 37°C
incubator with humidified atmosphere of 5% CO..
XAV-939 and genistein were purchased from Sigma-
Aldrich (St. Louis, MO). iCRT-3, iCRT-5 and iCRT-14
were obtained from ChemDiv (San Diego, CA). IWP-4
was purchased from Stemgent (San Diego, CA). Each
compound was reconstituted in dimethyl sulfoxide (DMSO)
(EMD, Germany). Recombinant human Wnt-3a (5036-
WNP) was purchased from R&D Systems (Minneapolis,
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MN), and reconstituted in PBS containing 0.1% BSA.
Puromycin was obtained from Enzo Life Sciences
(Farmingdale, NY). Matrigel was purchased from BD
Biosciences (San Jose, CA). Trypan blue solution was
obtained from Thermo Scientific (Waltham, MA). Rabbit
anti-SOX4 (LS-B3520) antibody, mouse monoclonal anti-
body against active PB-catenin (clone 8E7, #05-665), and
mouse monoclonal antibody against B-actin (8H10D10,
#3700) were purchased from LifeSpan BioSciences (Seattle,
WA), Millipore (Billerica, MA) and Cell Signaling Technol-
ogy (Danvers, MA), respectively. Mouse monoclonal anti-
body against -catenin (E-5, sc-7963) and rabbit polyclonal
antibody against Dvl-2 (H-75, sc-13974) were procured
from Santa Cruz Biotechnology, Inc (Santa Cruz, CA).
IRDye 680RD goat anti-rabbit and IRDye 800CW goat
anti-mouse secondary antibodies were purchased from
LI-COR Biosciences (Lincoln, NE). Alexa Fluor® 488
conjugated goat anti-mouse secondary antibody (A11017)
and Hoechst 33342 (H3570) were procured from Molecular
Probes (Eugene, OR). Fluoromount-G medium was pur-
chased from SouthernBiotech (Birmingham, AL).

Immunofluorescence staining and confocal microscopy
Cells were grown on sterile coverslips placed in 6-well
plate, and serum-starved for 24 hours prior to the treat-
ment with 200 ng/ml Wnt-3a for 4 hours. Cells were
then fixed with 4% paraformaldehyde for 15 minutes at
room temperature, and permeabilized with 0.5% Triton
X-100 for 10 minutes. After blocking with 3% BSA for
30 minutes, cells were incubated with the primary antibody
(mouse monoclonal antibody against [-catenin, 1:100
dilution) for overnight at 4°C. Cells were then incubated
with Alexa Fluor® 488 conjugated goat anti-mouse sec-
ondary antibody at 1:1,000 dilution for 1 hr at room
temperature in the dark. To ensure specificity of our
results, negative controls with no primary antibody or no
secondary antibody were included. For nuclear counter-
staining, cells were incubated with Hoechst 33342 (1:10,000
dilution) for 15 minutes. Coverslips were then mounted
with Fluoromount-G. Cells were visualized using Zeiss
LSM510 Meta confocal microscope (Carl Zeiss Microscopy
GmbH, Germany). Images were acquired at 200x total
magnification using Zeiss Zen 2009 software.

Generation of stable SOX4 knockdown cell line

Knockdown of SOX4 expression was performed using
MISSION short hairpin RNA (shRNA) lentiviral transduc-
tion particles (Sigma-Aldrich, St. Louis, MO) according to
manufacturer’s protocol. BT-549 cells were transduced
with scrambled control shRNA or SOX4 shRNA lentiviral
construct at 60-70% confluency. Puromycin (1 pug/ml) was
administered for two weeks for selection of transduced
cells. Knockdown of SOX4 was verified by Western
blotting and quantitative real-time RT-PCR.
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Western blot analysis

Whole cell lysates were prepared from cells on 100
mm-culture dish in lysis buffer containing 137 mM
NaCl, 20 mM Tris—HCI (pH 8.0), 10% glycerol, 1% NP-40,
and protease inhibitor cocktail (Promega, San Luis Obispo,
CA). Protein concentrations in the supernatants were
determined using Micro BCA Protein Assay Kit (Pierce
Biotechnology, Rockford, IL). 50 pg total protein was
separated on 7.5 or 10% SDS-polyacrylamide gel, and
transferred to nitrocellulose membrane. Membrane was
blocked in 1x PBS buffer containing 0.1% Tween-20 and
5% non-fat dry milk for 1 hour at room temperature, and
then incubated with primary antibody (mouse anti-active
[-catenin, 1:1,000; rabbit anti-Dvl-2, 1:400; rabbit anti-SOX4,
1:1,000) overnight at 4°C. Mouse monoclonal antibody
against B-actin (1:5,000) was used as normalization control.
Membrane was then incubated with fluorescence-conju-
gated secondary antibodies (IRDye 680RD goat anti-rabbit
and IRDye 800CW goat anti-mouse) at 1:5,000 dilution for
1 hour at room temperature, and signals were visualized
and quantitated using the Odyssey infrared imaging system
(LI-COR Biosciences, Lincoln, NE). Immunoblots were
repeated three times with new lysates from independent
experiments.

Quantitative real-time RT-PCR analysis

Total RNA was extracted from cultured cells using the
RNeasy Mini Kit (Qiagen, Valencia, CA), quantitated using
NanoDrop 1000 (NanoDrop, Wilmington, DE), and reverse
transcribed into ¢cDNA using iScript cDNA Synthesis
Kit (Bio-Rad Laboratories, Hercules, CA). Quantitative
real-time PCR was performed using iQ SYBR Green
Supermix (Bio-Rad Laboratories) on a Bio-Rad iCycler.
Sequences of the primers for Axin2 were 5'-CAGGACAC
TGCTCTCTCAGATTCA-3" (forward) and 5 -TCACAAC
AGCCTTTGCAGGG-3’ (reverse). Sequences of the primers
for SOX4 were 5'-CCGAGCTGGTGCAAGACC-3" (for-
ward) and 5'-CCACACCATGAAGGCGTTC-3’ (reverse).
Sequences of the primers for B-actin were 5'-CTGGAAC
GGTGAAGGTGACA-3" (forward) and 5'-AAGGGACTT
CCTGTAACAATGCA-3’ (reverse). The relative changes in
gene expression data were analyzed by the 2*2“" method.
[-actin was used as an internal control. Triplicates were run
for each sample in three independent experiments.

Apoptosis assay

Analysis of apoptosis was performed using Caspase-Glo
3/7 assay (Promega) according to manufacturer’s protocol.
BT-549 cells that were transduced with scrambled or
SOX4 shRNA lentiviral particles were seeded in 96-well
plate, and incubated overnight. Cells were then treated
with DMSO or 25 uM iCRT-3 for 12 hours. Caspase 3/7
activity was measured using FLUOstar OPTIMA (BMG
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Labtech, Cary, NC) microplate reader. Each sample was
assayed in triplicate in three independent experiments.

Dual-luciferase reporter assay

BT-549 cells were seeded into 12-well plates. After
overnight incubation, cells were transiently transfected
with 0.5 pg of TOP-FLASH firefly luciferase reporter
vector (Promega) and 0.04 pg of Renilla luciferase vector
(Promega) as an internal control for transfection efficiency
using Lipofectamine 2000 (Invitrogen) according to the
manufacturer’s protocol. After 24 hour-transfection, cells
were treated with DMSO or 25 uM iCRT-3 for 48 hours.
Cells were then lysed, and luciferase activities were
measured using Dual-Luciferase Reporter Assay System
(Promega) and TD-20/20 luminometer (Turner Design).
The relative luciferase activity was calculated by firefly
luciferase activity/Renilla luciferase activity. Data were
presented as mean+ SEM from three independent
experiments.

Cell proliferation, migration, and invasion assays using
xCELLigence system

xCELLigence experiments were performed using the RTCA
(Real-Time Cell Analyzer) DP (Dual Plate) instrument
according to manufacturers’ instructions (Roche Applied
Science, Mannheim, Germany and ACEA Biosciences,
San Diego, CA). The RTCA DP Instrument includes three
main components: (i) RTCA DP Analyzer, which is placed
inside a humidified incubator maintained at 37°C and 5%
CO,, (ii) RTCA Control Unit with RTCA Software prein-
stalled, and (iii) E-Plate 16 for proliferation or CIM-plate
16 for migration and invasion assays. First, the optimal
seeding number for each cell line (B-T549, MDA-MB-231,
HCC-1143 and HCC-1937) was determined by cell titra-
tion and growth experiments. After seeding the respective
number of cells/well (BT-549: 10,000 cells/well, MDA -
MB-231: 20,000 cells/well, HCC-1143: 5,000 cells/well,
and HCC-1937: 12,500 cells/well), the cells were automat-
ically monitored every 15 minutes. Cells were treated with
the compounds about four hours after seeding, when the
cells were in the log growth phase. For cell proliferation
assay in each cell line, cells were treated with DMSO as the
vehicle or different concentrations of each Wnt inhibitor:
iCRT-3 (25, 50, 75 pM), iCRT-5 (50, 100, 200 uM), iCRT-
14 (10, 25, 50 pM), IWP-4 (1, 2.5, 5 pM), and XAV-939
(5, 10 uM). For cell proliferation, migration and invasion
assays in BT549 cells with SOX4 knockdown, cells were
treated with DMSO or 25 uM iCRT-3. The upper cham-
ber of CIM-plate 16 was coated with Matrigel (1:40 dilu-
tion) for cell invasion assay. In addition, cell proliferation
was measured in BT-549 cells with SOX4 knockdown that
were treated with 50 ©M genistein for six days, and 25 pM
iCRT-3 at the time of the experiment. Each sample was
assayed in triplicate, and three independent experiments

Page 4 of 12

were performed. Cell proliferation assays were run for 48
hours, and cell migration and invasion experiments for 24
hours. Cell index value, which is used to measure the
relative change in electrical impedance to represent cell
morphology, adhesion or viability, was calculated for
each sample by the RTCA Software Package 1.2.

Cell viability assay

Cells were seeded at 20,000 cells/well into 96-well plates.
After overnight incubation, cells were treated with
DMSO or each Wnt inhibitor (iCRT-3, 75 uM; iCRT-5,
200 uM; iCRT-14, 50 uM; IWP-4, 5 uM and XAV-939,
10 uM) for 48 hours. Cell viability was determined using
the Cell Titer-Glo luminescent cell viability assay kit
(Promega) according to the manufacturer’s instructions.
Luminescence was measured using FLUOstar microplate
reader. All treatments were performed in triplicate, and
each experiment was repeated three times.

Statistical analysis

Data obtained from three independent experiments
performed in triplicate were presented as mean + SEM.
Student’s ¢-test (two-tailed, equal variance) was used to
determine significant differences between two groups
of data. p values of <0.05 and <0.01 were considered as
statistically significant, and are indicated by asterisks
(* and **, respectively).

Bioinformatics meta-analysis

Gene expression data was downloaded from the Gene
Expression Omnibus (GEO) repository using series acces-
sion GSE12790 derived from two studies of breast cancer
cell lines [38,39]. Data was also obtained from the Cancer
Cell Line Encyclopedia (CCLE) [40]. For the GSE12790
dataset, 43 luminal breast cancer cell lines were compared
to 12 TNBC cell lines of mesenchymal, mesenchymal
stem-like, or basal-like 2 subtypes of TNBC. For the CCLE
dataset 22 luminal cell lines were compared to 21 TNBC
cell lines. Differentially expressed genes were identified
by Significance Analysis of Microarrays [41] with a false
discovery rate of 5%, and pathway enrichment was deter-
mined by Ingenuity Pathway Analysis.

Results

Whnt signaling pathway is activated in TNBC cells

Previous studies have shown that Wnt pathway genes are
upregulated in TNBC tumors [10]. To verify these earlier
studies, we performed pathway enrichment analyses on
two independent datasets. The first dataset (GSE12790)
derived from two studies of breast cancer cell lines [38,39]
included microarray data from 43 luminal breast cancer
cell lines and 12 TNBC cell lines of mesenchymal, mesen-
chymal stem-like, or basal-like 2 subtypes. The second
dataset included microarray data from the Cancer Cell
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Line Encyclopedia (CCLE) [40] with microarray data from
22 luminal breast cancer cell lines and 21 TNBC cell lines.
For both the GSE12790 dataset and the CCLE dataset,
Wnt-pathway genes were strongly enriched (p=8.5e-6
and p = 3.0e-4, respectively). Genes differentially regulated
in TNBC cell lines in both analyses included CD44,
CDH1, DKK3, FZD7, SFRP1, SOX9, TGFB2, TLE4,
WNT10A, and WNT5B (see Additional file 1: Table S1
and Additional file 2: Figure S1).

This prompted us to first assess whether the Wnt
pathway was active in human TNBC cell lines by confocal
microscopy. We selected two mesenchymal subtype TNBC
cell lines (BT-549 and MDA-MB-231), and two basal-like 2
subtype TNBC cell lines (HCC-1143 and HCC-1937),
as well as the non-TNBC ER" control cell line MCF-7.
Immunofluorescence staining of B-catenin showed both
nuclear and cytoplasmic localization in TNBC cell lines
whereas [-catenin was observed only in the cytoplasm of
MCE-7 cells (Figure 1; see Additional file 3: Figure S2).
We further explored the subcellular localization of -ca-
tenin by treating the cells with Wnt-3a ligand (100 ng/ml)
for four hours. We observed increased nuclear localization
of B-catenin in MDA-MB-231 and BT-549 cells treated
with Wnt-3a but not in MCF-7 cells, suggesting respon-
siveness of the canonical Wnt pathway in TNBC cells. To
evaluate Wnt pathway activation, the expression levels of
active -catenin and phosphorylated Dvl-2 were examined
in TNBC and non-TNBC cell lines by Western blot ana-
lysis (Figure 2). Active B-catenin was detected in both
mesenchymal and basal-like subtypes, although the levels
were much higher in basal-like cells than in mesenchymal
cells. Activated B-catenin was lower in non-TNBC MCEF-7
cells than in basal-like TNBC cells, but surprisingly was
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higher than in mesenchymal TNBC cells. Wnt-induced
phosphorylation of Dvl-2 associated with mobility shift
was differentially observed in all cell lines, with the highest
ratio in HCC-1937 and the lowest in MDA-MB-231 cells.

iCRT-3 effectively inhibits cell proliferation in TNBC cells
To investigate the effectiveness of five different compounds
targeting the Wnt pathway in breast cancer cells, we first
tested the inhibitory effects iCRT-3, iCRT-5, iCRT-14,
IWP-4, and XAV-939 on cell proliferation in BT-549,
MDA-MB-231, HCC-1143 and HCC-1937 cell lines using
the xCELLigence system that allows continuous and quan-
titative monitoring of cell status in real-time. Cells were
treated with increasing concentrations of each compound
and assayed for 48 hours. The concentration range for
treatment with each inhibitor was determined based on
previous studies (34—36). This analysis showed that each
compound induced differential effects on proliferation of
these TNBC cells in a dose- and time-dependent manner
(Figure 3; see Additional file 4: Figure S3, Additional file 5:
Figure S4 and Additional file 6: Figure S5). These findings
were confirmed using an alternative cell viability assay,
the Cell Titer-Glo luminescent cell viability assay (see
Additional file 7: Figure S6). Taken together, these data
indicated that iCRT-3 was the most effective compound
that we tested for inhibiting proliferation in all of these
TNBC cells.

Wnt pathway is antagonized by iCRT-3 in BT-549 cells

To evaluate whether the inhibitory effects of iCRT-3 are
mediated through canonical Wnt signaling in TNBC,
BT-549 cells were serum-starved for 24 hours, and
then treated with Wnt-3a (200 ng/ml) and/or iCRT-3

Untreated

B-Catenin Hoechst

MCF-7

MDA-MB-231

BT-549

Merge

Figure 1 Wnt signaling pathway is activated in TNBC cells. Subcellular localization of B-catenin in TNBC cells treated with or without human
recombinant Wnt-3a (200 ng/ml) for 4 hours was examined using confocal microscopy. Immunofluorescence staining of -catenin (green)
showed cytoplasmic localization in MCF-7 cell line, and was both nuclear and cytoplasmic in TNBC cell lines, MDA-MB-231 and BT-549. Treatment
with Wnt-3a resulted in increased nuclear localization of B-catenin in MDA-MB-231 and BT-549 cells. Nuclei were counterstained with Hoechst
33342 (blue). Total magnification was 200x%, and the images were zoomed in 500%.

Wnt-3a

B-Catenin Hoechst Merge
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Figure 2 Relative expression levels of active B-catenin and phosphorylated Dvl-2 in non-TNBC (MCF-7) and TNBC (MDA-MB-231,
BT-549, HCC-1143 and HCC-1937) cell lines. Whole cell lysates were prepared, and analyzed for protein expression using Western blotting.
B-actin was used as normalization control. Data represent mean + SEM of three independent experiments.
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(25 uM) for four hours. Quantitative real-time RT-PCR
analysis of Axin2 in these cells showed that Wnt pathway
is significantly activated and iCRT-3 efficiently blocked the
expression of Axin2, which is a Wnt-induced target gene
(Figure 4A). However, none of the other Wnt inhibitors
had inhibitory effect on Axin2 expression (see Additional
file 8: Figure S7). Previous studies have reported that
iCRT-3 efficiently blocks the transcriptional function
of B-catenin [22,34]. To assess the effect of iCRT-3
treatment on transcriptional activity of -catenin in BT-

549 cells, dual luciferase assay was performed using the
TOP-FLASH reporter vector. Cells were transfected with
TOP-FLASH reporter and Renilla control vectors. After
24 hour-transfection, cells were treated with DMSO or 25
uM iCRT-3, and luciferase activity was measured at 48
hours post-treatment. iCRT-3 treatment of BT-549 cells
resulted in significant decrease in transcriptional activity
of B-catenin, suggesting that iCRT-3 inhibits the canonical
Wnt pathway (Figure 4B). These data demonstrate that
iCRT-3 antagonizes Wnt pathway signaling.
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Figure 3 iCRT-3 effectively inhibits cell proliferation in BT-549 cells in a dose- and time-dependent manner. Cells were treated with
vehicle (DMSO) or each of five Wnt inhibitors (iCRT-3, iCRT-5, iCRT-14, IWP-4, and XAV-939) at the indicated concentrations. Cell index values were
continuously measured for 48 hours at intervals of 15 minutes using an xCELLigence instrument. Data represent mean + SEM of three independent

experiments (**p < 0.01).

SOX4 knockdown synergizes with iCRT-3 to induce SOX4 could inhibit cell viability and induce apoptosis in
apoptosis in BT-549 cells TNBC cells. To test our hypothesis, we first transduced
Previous studies have shown that the oncogenic SOX4  the BT-549, MDA-MB-231, HCC-1143 and HCC-1937
transcription factor plays an important role in Wnt cells with scrambled or SOX4 shRNA lentiviral particles.
signaling pathways in many cancers including TNBC  However, generation of stable SOX4 knockdown was
[10,18,19]. Therefore, we hypothesized that knockdown of  successful only in BT-549 cells, possibly because SOX4
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knockdown may be lethal to the other lines tested. Western
blotting and quantitative real-time RT-PCR analyses
demonstrated that the expression of SOX4 protein in
BT-549 cells transduced with SOX4 shRNA was signifi-
cantly decreased in comparison with that of cells trans-
duced with scrambled shRNA, verifying that the expression
of SOX4 was successfully knocked down in BT-549 cells
(Figure 5A and B). Moreover, Caspase 3/7 activities showed
that while knockdown of SOX4 alone did not enhance
apoptosis of these cells (Figure 5C), combined treatment of
iCRT-3 with SOX4 knockdown has a synergistic effect in
inducing apoptosis.

SOX4 knockdown inhibits cell proliferation and migration
of BT-549 cells, and cooperates with iCRT-3 to inhibit
proliferation

To characterize the mechanism underlying the synergism
between SOX4 knockdown and iCRT-3 treatment, we next
assessed the effect of SOX4 knockdown in combination
with iCRT-3 treatment on cell proliferation, migration and
invasion in BT-549 cells using the xCELLigence system.
Cells that were transduced with scrambled or SOX4
shRNAs were treated with DMSO or 25 pM iCRT-3, and
monitored continuously for 48 hours in a proliferation
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assay, and for 24 hours in migration and invasion assays.
As shown in Figure 6, SOX4 knockdown inhibited cell
proliferation and migration. Effects on invasion were not
statistically significant, although the trend was towards
lower invasion with SOX4 knockdown. Combination
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Figure 6 SOX4 knockdown inhibits proliferation, migration and
invasion of BT-549 cells, and cooperates with iCRT-3 to inhibit
proliferation. Cells that were transduced with scrambled shRNA or
SOX4 shRNA lentiviral particles were treated with vehicle (DMSO) or
iCRT-3 (25 uM), and cell index measurements were continuously taken
for 48 hours in (A) proliferation assay, and 24 hours in (B) migration and
(C) invasion assays using an xCELLigence instrument. Data represent
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treatment of iCRT-3 with SOX4 knockdown induced
further decrease in cell proliferation, but had no increased
effect over SOX4 knockdown in cell migration or invasion.
Genistein has been shown to have anticancer effects
through targeting multiple signaling pathways, including
Wnt signaling [31,32]. Therefore, we tested the effect of
genistein in combination with SOX4 knockdown and/or
iCRT-3 treatment on proliferation in BT-549 cells. Cells
that were transduced with scrambled or SOX4 shRNAs
were treated with DMSO or 50 uM genistein for six days.
Cells were then treated with 25 pM iCRT-3, and moni-
tored for 48 hours (Figure 7). Genistein treatment did not
enhance the inhibitory effects of either SOX4 knockdown
or iCRT-3 treatment on cell proliferation in BT-549 cells.

Discussion

Due to the lack of hormone receptors and HER2 overex-
pression in patients with TNBC, hormonal therapies and
HER2-targeted agents are ineffective, and chemotherapy
is the main current systemic treatment in this subtype of
breast cancer [9]. Although they are sometimes respon-
sive to neoadjuvant chemotherapy, TNBC patients have
a higher rate of relapse with distant metastases and a
poorer prognosis than women with other breast cancer
subtypes [3,4,6-8]. These factors highlight the urgent
need to develop more effective and targeted therapy
options for patients with TNBC. Aberrant activation of
Wnt signaling, which plays a key role in the regulation
of cell growth, development and differentiation, has been
associated with many cancer types including colorectal,
prostate, liver, and breast cancers [16-19]. Thus, inhibition
of Wnt signaling could potentially be an effective approach
to the treatment of many types of human cancers.

In the present study, we investigated, for the first time,
the effects of five different small-molecule inhibitors that
target different components of the Wnt signaling pathway
on cell proliferation in four TNBC cell lines. These
representative cells belong to mesenchymal or basal-like
2 subtypes of TNBC in which Wnt pathway-associated
genes are specifically overexpressed. While mesenchymal
TNBC cells (MDA-MB-231 and BT-549) responded to
Wnt-3a treatment (Figure 1), basal-like 2 TNBC cells
(HCC-1143 and HCC-1937) did not even though they did
respond to iCRT-3 treatment. One hypothesis to explain
this observation is that basal-like 2 TNBC cells may
respond to different Wnt family ligands such as Wnt-5a,
Wnt-5b, or Wnt-10a. The small compound Wnt inhibitors
that we utilized in this study included (i) iCRT-3, iCRT-5
and iCRT-14 which inhibit catenin responsive transcription
(CRT) [35], (ii) IWP-4, an inhibitor of Wnt production
(IWP) that targets the acetyltransferase porcupine [37],
and (iii) XAV-939, which induces p-catenin degradation
by stabilizing axin through inhibition of poly-ADP-ribo-
sylating enzymes tankyrase 1 and tankyrase 2 [36]. Our
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Figure 7 Genistein has no inhibitory effect on cell proliferation
in BT-549 cells. (A) Cells that were transduced with scrambled
ShRNA or SOX4 shRNA lentiviral particles were treated with vehicle
(DMSO) or genistein (50 uM) for six days. (B) These cells were further
treated with iCRT-3 (25 pM) at the time of the proliferation assay,
and cell index measurements were taken for 48 hours using an
xCELLigence instrument. Data represent mean + SEM of three
independent experiments (**p < 0.01).

findings indicated that each inhibitor had differential ef-
fects on proliferation of each cell line. The mesenchymal
MDA-MB-231 and BT-549 cells were more sensitive than
the basal-like HCC-1143 and HCC-1937 cells. We specu-
late that these differentials are due to the different levels
of basal Wnt activation and different genetic backgrounds
of the cell lines that could provide for different mechanisms
of constitutive Wnt activation. Surprisingly, the cell lines
with the lower constitutive Wnt activity are more sensitive
to the inhibitors. It is not clear why this is the case, but we
can speculate that the inhibitors may be less effective
when Wnt activation levels are above a certain threshold.
Alternatively, the less sensitive cell lines may have activa-
tion of additional anti-apoptotic, pro-survival pathways that
confer resistance to Wnt pathway inhibition.

Our data also demonstrated that of these five com-
pounds, iCRT-3 was the most effective and consistent
one in inhibiting cell proliferation in all TNBC cell lines
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tested. Because iCRTs, IWP-4 and XAV-939 inhibit Wnt
signals through different mechanisms, the effectiveness
of each inhibitor would be expected to vary in these
TNBC cell lines depending on the genetic changes they
have. Previous reports have shown that IWP-4 and
XAV-939 are effective in cells which have loss of APC
tumor suppressor function, and this effectiveness could
be explained by the rate-limiting role that Axin proteins
play in canonical Wnt pathway. Our finding that there
was no significant inhibitory effect of IWP-4 and XAV-939
on proliferation of the TNBC cell lines examined in this
study may correlate with the fact that none of these TNBC
cell lines has a mutation in APC gene. In addition, iCRT-3
resulted in increased apoptosis in BT-549 cells, whereas
knockdown of SOX4 expression did not have a significant
effect on apoptosis. Combined treatment of SOX4 knock-
down with iCRT-3 synergistically induced apoptosis in
BT-549 cells. It is noteworthy that in the combination
experiments, we treated the cells with a suboptimal
concentration of 25 pM iCRT-3 in order to enable detec-
tion of synergistic effects of combination treatments. Lu-
ciferase reporter assays showed that iCRT-3 significantly
antagonized canonical Wnt pathway in BT-549 cells,
consistent with our finding that expression of Axin2 was
suppressed by iCRT-3 in these cells. Another important
finding in this study is that knockdown of SOX4 in BT-
549 cells had inhibitory effects on cell proliferation
and migration. Moreover, iCRT-3 treatment enhanced
SOX4 knockdown-induced inhibition of cell proliferation,
but did not have an additive effect over SOX4 knockdown
on migration and invasion of BT-549 cells.

Conclusions

We show in this study that iCRT-3 treatment inhibits
proliferation and induces apoptosis, whereas SOX4 knock-
down effectively inhibits cell proliferation and migration,
suggesting potential therapeutic roles for iCRT-3 and
SOX4 in targeting TNBC. These findings highlight the
importance of the Wnt signaling cascade in TNBC pro-
gression, and provide a strong rationale for future in vivo
studies of these agents in TNBC. Further investigation of
the molecular mechanisms of TNBC will provide a better
understanding of the pathogenesis, and thus additional
insight into the development of new, targeted therapeutics
for TNBC.

Additional files

Additional file 1: Table S1. List of genes differentially expressed in
TNBC cell lines in microarray analyses for Wnt pathway genes.

Additional file 2: Figure S1. Wnt pathway analysis of TNBC.

Additional file 3: Figure S2. Subcellular localization of 3-catenin in
HCC-1143 and HCC-1937 cells treated with or without human recombinant
Wnt-3a (200 ng/ml) for 4 hours was examined using confocal microscopy.
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Immunofluorescence staining of 3-catenin (green) showed cytoplasmic
localization in both cell lines. Treatment with Wnt-3a did not have an effect
on subcellular localization of 3-catenin in HCC-1143 and HCC-1937 cells.
Nuclei were counterstained with Hoechst 33342 (blue). Total magnification
was 200%, and the images were zoomed in 500%.

Additional file 4: Figure S3. iCRT-3 effectively inhibits cell proliferation
in HCC-1143 cells in a dose- and time-dependent manner. Cells were
treated with vehicle (DMSO) or each of five Wnt inhibitors (iCRT-3, iCRT-5,
iCRT-14, IWP-4, and XAV-939) at the indicated concentrations. Cell index
values were continuously measured for 48 hours at intervals of 15 minutes
using an xCELLigence instrument. Data represent mean + SEM of three
independent experiments (**p < 0.01).

Additional file 5: Figure S4. iCRT-3 effectively inhibits cell proliferation
in MDA-MB-231 cells in a dose- and time-dependent manner. Cells were
treated with vehicle (DMSO) or each of five Wnt inhibitors (i(CRT-3, iCRT-5,
iCRT-14, IWP-4, and XAV-939) at the indicated concentrations. Cell index
values were continuously measured for 48 hours at intervals of 15 minutes
using an xCELLigence instrument. Data represent mean + SEM of three
independent experiments (**p < 0.01).

Additional file 6: Figure S5. iCRT-3 effectively inhibits cell proliferation
in HCC-1937 cells in a dose- and time-dependent manner. Cells were
treated with vehicle (DMSO) or each of five Wnt inhibitors (i(CRT-3, iCRT-5,
iCRT-14, IWP-4, and XAV-939) at the indicated concentrations. Cell index
values were continuously measured for 48 hours at intervals of 15 minutes
using an xCELLigence instrument. Data represent mean + SEM of three
independent experiments (**p < 0.01).

Additional file 7: Figure S6. iCRT-3 effectively inhibits cell proliferation
in MDA-MB-231, BT-549, HCC-1143 and HCC1937 cells. Cells were treated
with vehicle (DMSO) or each of five Wnt inhibitors (iCRT-3, iCRT-5, iCRT-14,
IWP-4, and XAV-939) at the indicated concentrations. Cell viability was
measured using Cell Titer-Glo luminescent cell viability assay. Data represent
mean + SEM of three independent experiments (**p < 0.01).

Additional file 8: Figure S7. Wnt pathway is not antagonized by iCRT-5,
iCRT-14, IWP-4 or XAV-939. BT-549 cells were serum-starved for 24 hours,
and treated with Wnt-3a (200 ng/ml) and/or iCRT-5 (50 uM), iCRT-14

(10 uM), IWP-4 (1 uM) or XAV-939 (5 uM) for 4 hours. Total RNA was
prepared, and assessed for Axin2 expression using quantitative real-time
RT-PCR. B-actin was used as normalization control.
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