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Abstract

Background: Multiple farnesylated proteins are involved in signal transduction in cancer. Farnesyltransferase
inhibitors (FTIs) have been developed as a strategy to inhibit the function of these proteins. As FTIs inhibit
proliferation of melanoma cell lines, we undertook a study to assess the impact of a FTI in advanced melanoma. As
farnesylated proteins are also important for T cell activation, measurement of effects on T cell function was also
pursued.

Methods: A 3-stage trial design was developed with a maximum of 40 patients and early stopping if there were no
responders in the first 14, or fewer than 2 responders in the first 28 patients. Eligibility included performance status
of 0–1, no prior chemotherapy, at most 1 prior immunotherapy, no brain metastases, and presence of at least 2
cutaneous lesions amenable to biopsy. R115777 was administered twice per day for 21 days of a 28-day cycle.
Patients were evaluated every 2 cycles by RECIST. Blood and tumor were analyzed pre-treatment and
during week 7.

Results: Fourteen patients were enrolled. Two patients had grade 3 toxicities, which included myelosuppression,
nausea/vomiting, elevated BUN, and anorexia. There were no clinical responses. All patients analyzed showed
potent inhibition of FT activity (85-98%) in tumor tissue; inhibition of phosphorylated ERK and Akt was also
observed. T cells showed evidence of FT inhibition and diminished IFN-γ production.
Conclusions: Despite potent target inhibition, R115777 showed no evidence of clinical activity in this cohort of
melanoma patients. Inhibition of T cell function by FTIs has potential clinical implications.
Clinicaltrials.gov number NCT00060125
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Background
Metastatic melanoma is difficult to treat and it is only re-
cently that therapy has been shown to have an impact on
overall survival [1-3]. DTIC/dacarbazine has been shown
in contemporary studies to provide tumor responses in
less than 15% of patients, with a median response duration
of 3–4 months [4,5]. Combination therapies may increase
response rates, but without improvement in survival [6].
High dose interleukin-2 and ipilimumab benefit the mi-
nority of patients, albeit with a subset of patients experien-
cing durable responses [1,7,8]. Although many patients
with BRAF-mutated melanoma initially respond to
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vemurafenib, the only other agent approved by the FDA
for this disease, most will ultimately relapse [2]. Thus,
while significant advances in both immune based and mo-
lecularly targeted therapies have been made, survival for
many patients with metastatic melanoma remains poor.
New therapies are still needed for this disease, and the
testing of new agents is being driven by an increasing
knowledge of melanoma biology.
The vast majority of melanomas have activating muta-

tions in signaling proteins involved in the RAS pathway.
Mutations in RAS occur in around 15% of melanomas
[9,10]. In addition, frequent mutations in downstream RAS
effectors have been reported, the most common of which is
BRAF which has been reported to be mutated in approxi-
mately 50% of cases [11-13]. Mutated BRAF can be
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effectively targeted in patients with metastatic melanoma,
with impressive response rates in early phase trials [14-16].
Recent data now demonstrates an improvement in overall
survival in patients treated with selective BRAF inhibitors
when compared to dacarbazine, although many patients
ultimately relapse, further highlighting the importance of
understanding the molecular pathogenesis of this disease
[2,17]. Activation of the PI3 Kinase/Akt pathway has also
been implicated in melanoma tumorigenesis, potentially
through downregulated expression of the negative regula-
tor PTEN [18-20]. Interestingly, even in melanoma cells
having mutations in downstream effectors, constitutive
RAS activation is nonetheless seen, likely through the ac-
tivity of autocrine or paracrine growth factor secretion
[21]. Transgenic mouse experiments have confirmed the
important contribution of activated RAS-based signaling
to melanomagenesis in vivo [22-24].
Targeted inhibition of RAS-based signaling has there-

fore received significant attention. While kinase inhibi-
tors that interfere with the activity of the downstream
molecules PI3 Kinase, RAF, and MEK are in various
stages of development, it has been difficult to identify a
pharmacologic strategy to inhibit RAS activity directly
[25]. However, the fact that RAS must undergo a lipid
post-translational modification for localization to mem-
brane compartments where access to its effectors occurs
generated an alternative strategy for inhibiting RAS
function. The most important post-translational modifi-
cation of RAS is farnesylation, which is catalyzed by the
enzyme Farnesyltransferase (FT) [26]. FT inhibitors
(FTIs) have been developed as a strategy to block this
process, thereby decreasing RAS translocation to mem-
branes and reducing its ability to mediate activation of
downstream effectors [27]. Interestingly, despite the ini-
tial motivation of FTI development driven by an interest
in inhibiting RAS, FTIs have subsequently been shown
to have effects on numerous additional proteins involved
in tumor survival and proliferation. These include other
GTPases such as Rheb, Ral, RhoC and Rac1, as well as
factors involved in regulated protein translation and
angiogenesis [28,29]. Preclinical data have shown anti-
proliferative activity that is independent of Ras mutation
status, and mechanistic experiments have implicated al-
ternative farnesylated targets as functionally relevant.
Thus, FTIs may in fact target multiple signaling mole-
cules that contribute to malignant transformation and
are no longer viewed as pure RAS inhibitors [27]. Re-
cently, there has also been evidence to suggest that FTIs
may enhance the effectiveness of cytotoxic chemother-
apy when used in combination, potentially expanding
the role of these agents [30,31].
R115777 is an orally bioavailable methyl-quinolone,

which has been shown to be a potent and selective inhibi-
tor of FT in the nanomolar concentration range.
Preclinical experiments demonstrated activity against mel-
anoma tumor cell growth both in vitro and in vivo [32].
Phase I clinical trial testing identified a dose and schedule
of R115777 of 300 mg PO BID, given for 21 days of a 28
day cycle which was sufficiently well tolerated for subse-
quent investigation [33,34]. The most common toxicities
were myelosuppression, nausea, vomiting, and fatigue.
Phase II studies have shown clinical activity as a single
agent in patients with hematologic malignancies [35-39].
Together, these observations coalesced to motivate inves-
tigation of the FTI R115777 in patients with advanced
melanoma. Inasmuch as there was limited experience in
evaluating tumor tissue for effective biochemical target in-
hibition, an integral part of the current study involved
obtaining sizable tumor tissue before and during R115777
administration to measure FT enzymatic activity directly
and also to assess effects on specific signaling pathways
ex vivo.
Many of the signaling pathways involved in melano-

magenesis are also involved in T cell activation, includ-
ing the RAS pathway [40]. We recently have shown that
cytokine production and proliferation of T cells in re-
sponse to T cell receptor (TCR) engagement is blocked
in vitro by FTIs, suggesting that these compounds could
theoretically inhibit T cell function in treated patients
[41]. Given the importance of the immune system to
participate in melanoma growth control, the effect of
signal transduction inhibitors on lymphocyte function
has become a critical parameter to consider in the can-
cer context [42]. This may be particularly relevant, given
the recent data suggesting that selective inhibition of
BRAFV600E may increase T cell recognition of melanoma
antigens in vitro [43]. Therefore, an additional goal of
the current study was to assess whether T cell function
in treated patients was affected ex vivo.

Patients and methods
Study design
This was a multicenter phase II clinical trial of R115777 in
patients with metastatic melanoma carried out by the
CALGB melanoma working group. The primary objectives
were to estimate the clinical response rate and to evaluate
the toxicity of this agent in this patient population. The sec-
ondary objectives were to measure FT activity and effects
on signaling events in tumor tissue, and to assess effects
on T cell activation ex vivo from the peripheral blood.

Trial Conduct
CALGB developed and coordinated this trial. Institu-
tional review board approval and patient informed con-
sent were required at each participating center. Patient
registration and data collection were managed by the
CALGB Statistical Center. Data quality was ensured by
careful review of data by CALGB Statistical Center staff
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and by the study chairperson. Statistical analyses were
performed by CALGB statisticians.
As part of the quality assurance program of the

CALGB, members of the Audit Committee visit all par-
ticipating institutions at least once every three years to
review source documents. The auditors verify compli-
ance with federal regulations and protocol requirements,
including those pertaining to eligibility, treatment, ad-
verse events, tumor response, and outcome in a sample
of protocols at each institution. Such on-site review of
medical records was performed for a subgroup of 6
patients (43%) of the 14 patients under this study.

Patient selection
Patients must have had histologically confirmed melan-
oma with evidence for metastatic disease, either regional
in-transit metastases not amenable to complete surgical
resection or distant metastases. Treating physicians were
required to discuss available standard therapies including
DTIC and IL-2 prior to enrolling patients. Eligibility cri-
teria included: the presence of at least two accessible
lesions amenable to excisional biopsy for correlative
assays; measurable disease in addition to the lesions
planned for biopsy; absence of brain metastases; no al-
lergies to azoles (e.g. ketoconazole); no more than one
prior immunotherapy for metastatic disease; no prior
chemotherapy for any stage of disease; ECOG perform-
ance status of at least 1; at least 18 years of age; non-
pregnant and non-nursing; laboratory parameters within
the following range: absolute neutrophil count ≥ 1500/
μl; platelet count ≥ 100,000/μl; bilirubin ≤ 1.5 mg/dL;
creatinine ≤ 2.0 mg/dL.

Treatment plan
R115777 was administered orally at a dose of 300 mg
twice per day for 21 days of a 28-day cycle. Disease re-
staging was performed every 2 cycles. Patients could re-
main on treatment until unacceptable toxicity or disease
progression occurred. Prior to initiation of treatment,
and again during week 7, an excisional biopsy was
required to be performed for biologic correlates. At the
same time points, heparinized blood was obtained for
analysis of effects on T cells.

Evaluation of response and toxicities
Disease assessment was performed using RECIST criteria
every two cycles. Toxicity evaluation was performed at
least once per cycle. Dose reductions were allowed, with
dose level −1 at 200 mg BID, dose level −2 at 100 mg BID,
and dose level −3 being permanent discontinuation. For
neurologic toxicity ≥ grade 2, drug was held until reso-
lution to ≤ grade 1 and continued at a 1 level dose reduc-
tion. If the toxicity did not resolve within one week, then
drug was permanently discontinued. For hematologic
toxicities, if a grade 4 toxicity was observed then drug was
held for up to 2 weeks. If resolution occurred to ≤ grade 1,
then drug was resumed at a 1 level dose reduction. For
other toxicities, if a grade 3 event was attributed to drug,
then treatment was held up to 2 weeks. If toxicity resolved
to ≤ grade 1, then drug was resumed at a 1 level dose re-
duction. If toxicity did not resolve within 2 weeks then
drug was permanently discontinued. For any grade 4 non-
hematologic toxicity attributed to drug, treatment was
permanently discontinued.

Statistical considerations
A 3-stage design was used to allow for early termination
if the drug appeared ineffective in this patient popula-
tion. A maximum of 40 patients was targeted for enroll-
ment, with the null hypothesis that the response rate
(complete or partial response) is less than or equal to
0.05 versus the alternative hypothesis that the response
rate is greater than or equal to 0.20. If no responses were
observed in the first 14 patients then the trial would
conclude accepting the null hypothesis. Otherwise, 14
patients would be enrolled in stage 2. If 2 or fewer total
responses were observed, then the null hypothesis would
be accepted. Else, the third stage would accrue to a total
of 40 patients. If 4 or more responses were observed
among 40 patients, then the drug would be considered
efficacious. This procedure had a power of 0.91 and a
significance level of 0.10. The probability of early ter-
mination was approximately 0.85 under the null hypoth-
esis. For the correlative assays, descriptive statistics were
proposed to describe changes in post-treatment versus
pre-treatment specimens.

Tumor biopsies and assays for FT activity and RAS
pathway signaling
Excisional biopsies were performed to obtain sufficient tis-
sue for analysis and to minimize sampling error. Tissue was
rapidly processed and stored until batched analysis. Proteins
were extracted from snap-frozen tumor tissue using a tissue
protein extraction reagent from Pierce (200 mg tumor/1 ml
reagent). After homogenization at 4°C, the samples were
spun at 13,000 x g and the supernatant found between the
fatty top layer and the pellet was used for biochemical
analysis. The FTase enzymatic assays as well as Western
blots for protein level determination were carried out as
described previously [35,44]. All analyses were performed
in the laboratory of Dr. Said Sebti, at Moffitt Cancer
Center.

Measurement of FTI action on T cells ex vivo
Peripheral blood mononuclear cells (PBMC) were separated
from heparinized blood samples and stored as viable cells
in freezing medium until batch analysis. Briefly, cells were
thawed, cultured with the superantigen Staphylococcal



Table 1 Toxicities associated with administration of
R115777

Grade of Adverse Event

2 3 4 5

n (%) n (%) n (%) n (%)

Hematologic Adverse Events

Anemia 1 (8) 1 (8) 0 (0) 0 (0)

Leukopenia 2 (17) 0 (0) 0 (0) 0 (0)

Neutropenia 0 (0) 1 (8) 1 (8) 0 (0)

Maximum Hematologic AEs 1 (8) 1 (8) 1 (8) 0 (0)

Non-Hematologic Adverse Events

Constitutional

Fatigue 4 (33) 0 (0) 0 (0) 0 (0)

Gastrointestinal

Anorexia 1 (8) 1 (8) 0 (0) 0 (0)

Dehydration 0 (0) 1 (8) 0 (0) 0 (0)

Diarrhea 1 (8) 0 (0) 0 (0) 0 (0)

Nausea 1 (8) 1 (8) 0 (0) 0 (0)

Vomiting 1 (8) 1 (8) 0 (0) 0 (0)

Metabolic

Creatinine 0 (0) 1 (8) 0 (0) 0 (0)

Hyperglycemia 1 (8) 0 (0) 0 (0) 0 (0)

Neuropathy 1 (8) 0 (0) 0 (0) 0 (0)

Pain 1 (8) 0 (0) 0 (0) 0 (0)

Dyspnea 1 (8) 0 (0) 0 (0) 0 (0)

Maximum Non-Hematologic AE 5 (42) 2 (17) 0 (0) 0 (0)

Overall Adverse Events 5 (42) 2 (17) 1 (8) 0 (0)
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enterotoxin A (SEA) or with Phorbol Myristate Acetate
(PMA)/Ionomycin as a positive control, with or without the
addition of R115777 in vitro as a comparison. After over-
night culture, supernatants were analyzed for IFN-γ con-
tent by ELISA using antibody pairs from Pharmingen.
Post-versus-pre-treatment samples were compared using
a paired t-test. In parallel, cells were lysed and analyzed by
Western blotting for the apparent molecular weight of the
farnesylated protein HDJ-2 as described previously [45].

Results
Patient characteristics
Fourteen patients with metastatic melanoma were en-
rolled in this study between May 2003 and April 2005.
The median age was 56 years (range: 36–89), and 9
(64%) were male. Five patients reported prior immuno-
therapy for metastatic disease, and 7 had an elevated
LDH (greater than institutional ULN).

Toxicity and clinical response
Treatment with R115777 was generally well tolerated.
Only two patients showed grade 3 toxicities. One patient
experienced grade 3 nausea and vomiting, which was
associated with an increased serum BUN. A second pa-
tient experienced grade 3 myelosuppression and anorexia.
These adverse events were readily reversible. Table 1.
Clinical response was assessed using RECIST criteria.

There were no objective partial or complete responses
observed in this cohort of 14 patients. Four patients
exhibited stable disease and went on to a second course
of therapy but progressed after an additional two cycles.
All remaining patients progressed during the first cycle
of treatment.

Effects on farnesyltransferase (FT) enzymatic activity and
selected signaling proteins in tumor tissue
Lack of clinical efficacy with an agent targeting a signaling
pathway could be due to insufficient target inhibition,
pathway modulation, or alternatively could be a reflection
of tumor growth despite successful target blockade. In
order to measure directly the biological effect of R115777
on its target FT, tumor biopsies obtained before and dur-
ing week 7 of treatment were analyzed for FT enzymatic
activity. Eight patients generated tumor tissue that con-
tained sufficient quantity and quality of protein at both
time points for analysis. As shown in Figure 1, FT enzym-
atic activity was suppressed by 85-98% in all tumor tissues
analyzed comparing the week 7 to the pre-treatment time
points. These results indicate that the target protein was
inhibited very effectively in tumor tissue with the dose
and schedule of R115777 used.
Although FT inhibition could result in multiple signal-

ing proteins accumulating in a non-farnesylated form, if
RAS itself was among the proteins affected, then
inhibition of downstream effectors of RAS, such as ERK
and Akt, might be observed. Indirect mechanisms to in-
hibit ERK and Akt activation also are conceivable. To
test this notion, Western blot analysis was performed for
phospho-ERK and phospho-Akt in the same tumor sam-
ples described above. Total β-actin was used as a loading
control. As shown in Figure 2, constitutive phosphoryl-
ation of both ERK and Akt was detected at baseline in
most of the samples analyzed. Interestingly, in several
samples a marked decrease in detectable phospho-ERK
and phospho-Akt was noted in the post-treatment sam-
ples (e.g. patients 3, 5, 10, and 11.). As none of these
patients experienced tumor shrinkage, these results sug-
gest that significant inhibition of measurable ERK and
Akt activation can occur in melanoma metastases with-
out a demonstrable clinical response.

Effects on peripheral blood T cell function
The host immune response is thought to play a significant
role in controlling metastatic melanoma, and this tumor type
can be quite responsive to immunotherapeutic interventions



Figure 1 Measurement of FT activity in tumor biopsies pre-
treatment compared to on-therapy. Excisional biopsies of
cutaneous melanoma metastases obtained prior to therapy with
R115777 and during week 7 of therapy were cryopreserved until
analysis. FT activity was assessed as described in Materials and
Methods. All post-treatment values were statistically significantly
inhibited using an unpaired t-test (p<0.01). The assay was performed
on single tumors in triplicate, and the error bars represent the
variation in the assay for each sample.
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[46]. We recently reported that FTIs can inhibit T cell ac-
tivation through the T cell receptor (TCR) complex [41].
Therefore, it was of interest to determine whether there
was evidence of suppression of T cell function from the
peripheral blood cells of patients treated with R115777.
We previously had reported that Western blot analysis of
HDJ-2 could be used as a surrogate for farnesylation sta-
tus in hematopoietic cells [41]. We therefore applied that
assay to peripheral blood T cells. As shown in Figure 3
for three representative patients, accumulation of non-
farnesylated HDJ-2 was easily detected in T cells at the
week 7 time point. These results indicate that farnesyla-
tion was inhibited in peripheral blood T cells as it had
been in the tumor tissue. To gauge whether T cell func-
tion could be affected by this inhibition of protein farne-
sylation, IFN-γ production was assessed on T cells
stimulated ex vivo with the polyclonal stimulus, SEA.
The combined data from all available patients are shown
in Figure 4. Significant inhibition of IFN-γ production
was observed in the week 7 samples compared to pre-
treatment specimens. These results suggest that R115777
Figure 2 Analysis of phospho-ERK and phospho-Akt in tumor biopsie
material obtained prior to therapy with R115777 and during week 7 of the
phospho-Erk, and total β-Actin.
is capable of inhibiting T cell activation in humans
in vivo.

Conclusions
Potent anti-tumor effects of FTIs on melanoma cells
in vitro motivated clinical exploration of R115777 in
patients with advanced melanoma. Although the drug
was well tolerated, and potent inhibition of FT in tumor
tissue was documented, no clinical activity was observed
in this cohort of patients. While it is conceivable that in-
hibition of FT activity by 85-98% is not enough to
achieve an anti-tumor effect and that complete target in-
hibition may be required, these results nonetheless sug-
gest that inhibition of FT alone will not be sufficient for
clinical activity in melanoma. One caveat of this inter-
pretation is that, while pre-treatment samples were
analyzed by pathology to confirm the presence of melan-
oma, given the large amount of tissue needed to perform
the correlative analyses, post-treatment samples were
not routinely assessed for viable tumor. It is therefore
technically possible that the decrease in FT activity seen
in the post-treatment samples could be due to inad-
equate tumor in the sampled tissue, as a result of either
necrosis or contamination with adjacent normal tissue.
Given that marked FT inhibition was seen in multiple
clinically evident lesions post therapy, and that no clin-
ical responses were observed, it is most likely that these
results reflect true target inhibition.
A recent clinical trial in patients with acute myelogen-

ous leukemia has shown that patients whose tumor cells
have a high ratio of expression of two genes, RASGRP1
and APTX, are more likely to respond to R115777 [47].
Therefore, in future trials it might be of interest to de-
termine if this gene expression ratio is also indicative of
the dependence of melanoma tumors on farnesylation.
Therefore, the selection of patients whose melanoma
tumors express such a high ratio may have a greater
likelihood of clinical responses. Understanding the mu-
tation status of RAS, BRAF and PI3K may also be in-
formative for predicting tumor sensitivity resistance and
would be important for future work.
The mechanism of anti-tumor activity of FTIs when

they are effective is incompletely understood, and the
s pre-treatment compared to on-therapy. Excisional biopsy
rapy was analyzed by Western blot for the presence of phospho-Akt,



Figure 3 HDJ-2 gel shift in peripheral blood lymphocytes analyzed ex vivo. PBMCs obtained pre-treatment and during week 7 of therapy
were analyzed by Western blot for the apparent molecular weight of the farnesylated protein HDJ-2. The appearance of a higher molecular
weight band is indicative of a non-farnesylated state.
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majority of FTI trials have failed to demonstrate mean-
ingful clinical activity, despite confirmation that FTase
or another intended target was inhibited. Multiple
mechanisms of resistance and escape have been pro-
posed. It is possible, for example, that NRAS escapes the
dependence on farnesylation and alternatively undergoes
prenylation by geranylgeranyltransferase 1 (GGT 1). Fur-
thermore, a better understanding of the clinically rele-
vant FTI substrates is clearly needed, enabling better
patient selection. Multiple proteins undergo prenylation,
and it is likely that many are yet to be identified. RAS
family proteins represent only a subset of molecules that
undergo post-translational modification through farnesy-
lation, and several alternative targets have been proposed
that may be the most relevant for inhibition of tumor
cell growth [27]. Interestingly, using normal murine and
human T cells as a model system, we have observed that
FTIs inhibited TCR-dependent cytokine production
under conditions in which RAS pathway signaling was
unaffected. Rather, in that system, inhibition of cytokine
production appeared to occur at the post-transcriptional
Figure 4 IFŇγ production by peripheral blood lymphocytes
analyzed ex vivo. PBMC obtained pre-treatment and during week 7
of therapy were analyzed for T cell function by stimulating with the
superantigen SEA and measuring IFN-γ production by ELISA. The
post-versus pre-treatment values for the group of samples were
statistically different as measured using a paired t-test (p<0.05).
level and was associated with inhibition of p70S6 Kinase
activation [41]. Rheb is a candidate farnesylated protein
that activates the p70S6 Kinase pathway [48]. In vitro
data suggest that the FTI lonafarnib may enhance the
effects of the RAF inhibitor sorafenib via inhibition of
mTOR signaling by blocking Rheb farnesylation [49].
Subsequent studies have shown that inhibition of mTOR
signaling with lonafarnib augments sorafenib-induced
apoptosis in melanoma cell lines. Interestingly, this effect
seemed to be independent of BRAF or NRAS mutation
status [50]. Thus, while these agents were initially devel-
oped as RAS inhibitors, our collective data suggest that
the effects of FTIs likely affect multiple signaling
pathways.
Of note, a randomized phase II trial comparing sorafe-

nib in combination with either the mTOR inhibitor tem-
sirolimus or R115777 in an unselected patient population
failed to demonstrate meaningful clinical activity [51]. It is
now known, however, that sorafenib is inactive in patients
with BRAF-mutated melanoma, and the role of combin-
ation therapy with the newer selective BRAF inhibitors in
patients whose tumors carry the BRAFV600E mutation is
unknown. However, the knowledge that the effect of lona-
farnib appeared to be independent of mutational status
provides theoretical basis for molecularly targeted therapy
in patients whose tumors are wild-type for BRAF, a group
who currently has no such option available. Additionally,
recent data suggests that selective BRAFV600 inhibition
does not impair the immune response [52]. Taken to-
gether, these data suggest that combination therapy of an
FTI with a more selective BRAF inhibitor, with or without
immunotherapy, may represent potential treatment strat-
egies in the future for appropriately selected patients.
Several patients on this study demonstrated inhibition

of ERK and Akt phosphorylation in tumor tissue follow-
ing treatment with R115777, yet they did not have a
clinical response. It is important to emphasize that
reduced phospho-ERK and phosho-Akt does not prove
that Ras proteins themselves were inhibited, as indirect
effects are also conceivable. While the amount of tissue
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available limited the number of signaling proteins that
could be analyzed after the FT assay was performed
using most of the sample, this observation suggests ei-
ther that more complete blockade of these pathways is
necessary in order to have tumor regression, or that sal-
vage mechanisms can arise that enable tumor growth
despite inhibition of these pathways. Recent experience
with BRAF inhibitors has suggested that a very high level
of pathway inhibition (>90%) is necessary in order to
achieve clinical tumor shrinkage [14]. One hypothetical
salvage mechanism is through regulated expression of
MAP Kinase phosphatases, which might be highly
expressed in tumor cells that have constitutive ERK acti-
vation, but may decrease in expression when the ERK
pathway is partially inhibited, thus resulting in little
change in the final output of ERK phosphorylation of
target genes. These and other potential mechanisms of
resistance will be of interest to pursue in future studies
of targeted inhibitors in melanoma.
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