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Abstract

Background: MicroRNAs are aberrantly expressed and correlate with tumourigenesis and the progression of solid
tumours. The miR-200 family determines the epithelial phenotype of cancer cells and regulates invasiveness and
migration. Thus, we hypothesised that the quantitative detection of the miR-200 family as epithelial-specific
microRNAs in the blood could be a useful clinical biomarker for gastric cancer (GC).

Methods: We initially validated the expression levels of miR-200a, 200b, 200c and 141 in GC cell lines (n = 2) and
blood from healthy controls (n = 19) using real-time quantitative reverse transcription PCR (qRT-PCR). The microarray
expression profiles of the miR-200 family in 160 paired samples of non-tumour gastric mucosae and GC were
downloaded through ArrayExpress and analysed. MiR-200c was selected for clinical validation. The qRT-PCR
prospective assessment of miR-200c was performed using 67 blood samples (52 stage I-IV GC patients and 15
controls); the area under the receiver operating characteristic curve (AUC-ROC) was estimated. The Kaplan-Meier
and Breslow-Wilcoxon tests were used to assess the correlation of miR-200c with overall and progression-free
survival (OS and PFS). Multivariate analyses were performed using the Cox model.

Results: The miR-200c blood expression levels in GC patients were significantly higher than in normal controls
(p = 0.018). The AUC-ROC was 0.715 (p = 0.012). The sensitivity, specificity and accuracy rates of 65.4%, 100% and
73.1%, respectively, were observed. The levels of miR-200c in the blood above the cutoff defined by the ROC curve
was found in 17.6% of stage I-II GC patients, 20.6% of stage III patients and 67.7% of stage IV patients (p < 0.001).
The miR-200c expression levels were not associated with clinical or pathological characteristics or recent surgical
procedures. There was a correlation (p = 0.016) with the number of lymph node metastases and the increased
expression levels of miR-200c in blood were significantly associated with a poor OS (median OS, 9 vs 24 months;
p = 0.016) and PFS (median PFS, 4 vs 11 months; p = 0.044). Multivariate analyses confirmed that the upregulation
of miR-200c in the blood was associated with OS (HR = 2.24; p = 0.028) and PFS (HR = 2.27; p = 0.028), independent
of clinical covariates.

Conclusions: These data suggest that increased miR-200c levels are detected in the blood of gastric cancer
patients. MiR-200c has the potential to be a predictor of progression and survival.
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Background
Gastric cancer (GC) is among the most frequent types of
cancer worldwide [1] with a total of 989,600 new cases
and 738,000 deaths estimated in 2008. Although GC
rates have decreased in recent decades, there are signifi-
cant regional variations in incidence and the rates for
the gastro-oesophageal junction and cardiac adenocar-
cinomas have increased in several Western countries. In
Spain, the adjusted mortality rates were 13 per 100,000
males and 5.5 per 100,000 females. In Galicia, in the
northwest of Spain, the mortality rates are even higher,
reaching 16.14 per 100,000 in males. Global survival
rates are poor, lower than 28% at 5 years [2].
The stage at diagnosis and the options for curative sur-

gery remain the most important prognostic factors.
However, distant and loco-regional relapses frequently
occur in spite of resection and multimodality therapy.
Well-characterised biomarkers are necessary for early
diagnosis, to predict metastatic progression and to per-
sonalise therapy. Nevertheless, the currently available
blood tumour markers are not recommended for the
screening or diagnosis of GC, do not have independent
prognostic value and are not recommended for progno-
sis or prediction [3].
Haematogenous tumour seeding is considered an early

event in the metastatic process. Therefore, the detection
of circulating tumour cells (CTC) could be useful to
identify the patients at a high risk of disease progression
and death and might indicate the need for further thera-
peutic approaches [4]. The PCR amplification of tissue
or tumour-selective cellular and circulating nucleic acids
(CNA) is the most powerful tool for the detection of
CTC or occult metastases [4,5].
Mature microRNAs are single-stranded, noncoding

RNAs that play key roles in various cellular processes
commonly implicated in cancer, such as differentiation,
cell growth, angiogenesis, epithelial-to-mesenchymal
transition (EMT) and invasion. A large amount of data
has revealed the correlation between specific tumours
and differential miRNA expression profiles, thus provid-
ing a new class of disease-specific biomarkers [6-8]. An
increasing number of studies analysing the miRNA ex-
pression profiles in gastrointestinal tumours, including
GC and their potential clinical relevance have been
reported [9,10]. The content for a given miRNA species
is estimated at 103 to 104 molecules per cell, which is
one to two orders of magnitude more than most mRNAs
[11]. Both messenger and non-coding RNAs can be
detected in blood and studies indicate that miRNAs are
particularly stable and abundant [12-15]. Circulating
miRNAs could be derived from passive leakage from
apoptosis or necrosis of cancer cells but also from tissue
damage or chronic inflammation. In addition, both can-
cer and nonmalignant cells, including immune cells, can
actively release miRNAs, either microvesicles-associated
or free, in a selective manner [16].
Developmental [17,18] and expression profiles studies

[19,20] show an enrichment of the miR-200 family in
differentiated epithelial tissues. It has been suggested
that the miR-200 family is a powerful marker and an es-
sential regulatory factor of the cancer cell epithelial
phenotype [21-25]. The miR-200 family of miRNAs con-
sists of five members: miR-200a, 200b and 429, located
on chromosome 1p36; and miR-200c and 141, located
on 12p13. MiR-200a and miR-141 share a seed sequence,
while miR-200b, miR-200c and miR-429 also share a
seed sequence, which differs from that of miR-200a/141
by one nucleotide. However, there is evidence that the
different miRNAs could control different regulatory net-
works [26,27]. Previous reports have indicated that the
levels of peripheral blood-derived exosomal miR-200c
are increased in ovarian cancer patients [28] and the
serum levels of miR-141 are specifically elevated in pros-
tate cancer patients [13,29]. Both miR-200a and miR-
200b are significantly elevated in the sera of pancreatic
cancer and chronic pancreatitis patients compared with
healthy controls [30].
Therefore, we hypothesised that the quantitative detec-

tion of the miR-200 family, as epithelial-specific miR-
NAs, in the whole blood could be useful as clinical
biomarkers in gastric cancer patients. Therefore, the
blood miR-200 cluster expression might correlate with
GC diagnosis, staging and prognosis. Our results
demonstrated that miR-200c expression levels were
increased in the blood of GC patients. Likewise, the
blood levels of miR-200c emerged as a compelling and
independent prognostic indicator for the progression
and survival of GC patients.

Methods
Participants
Consecutive GC patients from the Medical Oncology Unit
at the University Hospital in La Coruña (Galicia, Spain)
were eligible for the study. The inclusion criteria included
a confirmed pathological diagnosis of gastric or gastro-
oesophageal junction adenocarcinoma and no prior sys-
temic medical therapy for cancer. The exclusion criteria
included any other previous malignancy, coagulation dis-
orders and a platelet count less than 20.0 x 109 L-1.
The diagnostic work-up included a clinical examin-

ation, blood sampling, endoscopy (when clinically indi-
cated) and computed tomography (CT) scanning of the
chest, abdomen and pelvis. The patients were followed
up clinically with imaging every 8 to 12 weeks for the
first 2 years and every 6 months thereafter to monitor
disease progression.
In GC patients, peripheral venous blood (PB) for quan-

titative reverse transcription PCR (qRT-PCR) analysis was
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obtained after surgery or in the presence of clinical and
radiological disease when surgery was not indicated. The
first 5 mL of collected blood was discarded to avoid con-
tamination with epidermal cells. The PB (10 mL) was col-
lected in EDTA-containing tubes. Then, the PB was
frozen at −20°C in RNAlater for storage until RNA
extraction.
The controls were recruited from the patients’ family

and relatives. We only excluded subjects with a previous
history of malignant disease. Thus, controls with differ-
ent chronic but stable diseases (e.g., peptic disease,
hypertension, diabetes mellitus or heart disease) were
eligible and consecutively recruited. The control cohort
was selected to include a sex and age distribution that
was comparable to the patient group.
This study was approved by the Ethics Committee of

Clinical Investigation of Galicia (Spain) and conducted
in compliance with the Helsinki Declaration. Written
informed consents were obtained from all the patients
and the controls prior to their inclusion in the study.

Pathological analyses
Tumours and regional lymph nodes collected during
surgery were processed on a routine diagnostic basis.
Histological type, depth of invasion and nodal involve-
ment were analysed and the disease was staged and
graded according to the TNM and Laurent classification
[31]. Residual disease status at the time of blood sam-
pling was classified as R0 when no residual disease was
present after surgery, R1 when microscopic residual dis-
ease was found and R2 in the presence of macroscopic
disease. The patients from whom the blood was obtained
before the start of neo-adjuvant treatment were cate-
gorised as R2. When surgery was not performed, the
pathological diagnosis was based on endoscopic or
radiological-guided biopsies.

Blood microRNA isolation and qRT-PCR
To isolate the miRNA fraction, the RiboPure-Blood Kit
was used with the alternate protocol: isolation of small
RNAs (Applied Biosystems, Foster City, CA, USA). The
procedure was performed using 0.5 ml of whole blood
per preparation. The absorbances at 260/280 and 260/
230 were assessed using a NanoDrop™ 1000 spectro-
photometer (Nanodrop Technologies, Wilmington, DE,
USA). The purified RNA was further processed using
qRT-PCR or stored at −80°C until use.
Reverse-transcription (RT) PCR was performed with

25 ng (up to 6.6 μl) of total RNA using the mirVana™qRT-PCR miRNA Detection Kit (Ambion, AM1558) with
2 μl 5X RT Buffer, 1 μl 1X RT Primer (Ambion, miR-200a,
A30094; miR-200b, AM30095*; miR-200c, AM30096*;
miR-141, AM2052*) and 0.4 μl of ArrayScript Enzyme
Mix for a total volume of 10 μl.
For the PCR reaction, 10 μl of RT reaction and PCR
Master Mix were used. The PCR Master Mix consisted
of 5 μl 5X PCR buffer containing SYBR Green I, 0.2 μl
SuperTaq 5 U/μl, 0.5 μl PCR primers and 9.3 μl of
nuclease-free water for a total volume of 15 μl. Real-
time PCR was performed on the LightCycler® 480
Instrument (Roche, Mannheim, Germany).
To control input variability and sample normalisation,

primer sets specific for the small RNA species U6
snRNA (Ambion, AM30303) and 5S rRNA (Ambion,
AM30302) were used. These primer sets were used not
only as internal controls but also to verify the integrity
of the RNA and the reverse transcription reaction. Any
specimen with inadequate U6 snRNA or 5S rRNA ex-
pression would be excluded from the study.
For miR-141, miR-200b and miR-200c, the PCR cyc-

ling conditions and analysis were as follows: denatur-
ation at 95°C for 8 seconds; cycling, 40 cycles of 95°C
for 5 seconds, 60°C for 5 seconds and 72°C for 2 seconds;
melting curve analysis, 1 cycle at 95°C for 5 seconds,
55°C for 1 minute 5 seconds and 95°C continuous;
and finally, cooling at 40°C for 10 seconds. The condi-
tions were identical for miR-200a, U6 snRNA and 5S
rRNA, except the denaturation step was 1 cycle at 95°C
for 6 seconds.
We verified that the amplification of each PCR prod-

uct was specific using a melting curve analysis. The
amplification efficiency was determined for both target
and reference genes. Each assay was performed at least
in triplicate. The quantification cycle (Cq) was per-
formed using LightCycler 480 Quantification software
(Roche, Mannheim, Germany). For further data analysis,
only those miRNAs with a Cq value equal to or below
35, representing detection of one single-molecule tem-
plate [32], were considered. Positive and negative con-
trols were included in each experiment.
The Relative Expression Software Tool (REST) was

used to analyse the relative miRNA expression in each
sample and to determine the fold difference for every
miRNA [33]. The expression levels of the target miRNAs
were standardised using an index containing 5S rRNA
and U6 snRNA.
miRNA analyses were performed with no knowledge

of the clinical or follow-up data.

miR-200 cluster expression profiling
To analyse the expression of the miR-200 family in gas-
tric cancer, the OE19 and MKN-45 human gastric cell
lines were used. The cell lines were maintained in Dul-
becco’s modified Eagle’s medium (DMEM) with high
glucose and MegaCellTM RPMI-1640 medium (both pro-
vided by Sigma–Aldrich Química, Madrid, Spain) sup-
plemented with 10% inactivated foetal calf serum, 1%
penicillin, 1% streptomycin and 1% amphotericin at 37°C
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in 5% CO2. The cells were recovered with 1% trypsin–1%
EDTA cell-dissociating reagent.
The isolation of total RNA (including miRNA) from

the cell cultures was performed using the mirVanaTM

miRNA isolation kit (Ambion, Inc. AM1560). The pro-
cedure was performed using 107 cultured cells at 70%
confluence.
The miR-200 expression profiles in paired samples

(n = 160) of non-tumour gastric mucosa and GC were
obtained using bioinformatic analysis of the data origin-
ally published by Ueda T, et al. [10]. The microarray
expression was downloaded through the public reposi-
tory ArrayExpress (experiment number E-TABM-341.
http://www.ebi.ac.uk/arrayexpress/). Only the normalised
expression values were used for subsequent analysis. The
differential expression levels were calculated using a
moderate t-test implemented in the Bioconductor limma
package (R statistical software). The comparisons were
performed using t-test and pairwise t-tests. The resulting
p values were adjusted for multiple testing using
Benjamini-Hochberg’s adjustment [34,35].

Study design and statistical analyses
The primary aims were to estimate the diagnostic accur-
acy and usefulness of miRNA as measured by qRT-PCR
in the blood of GC patients as a clinical biomarker and
to determine its potential prognostic value. The study
was performed following the proposed guidelines of the
Early Detection Research Network [36]. The design and
results are presented in accordance with the REMARK
[37] and MIQE guidelines [38].
The receiver operating characteristic (ROC) curve was

constructed by plotting sensitivity (Y-axis) vs 1-
specificity (X-axis) and the areas under the curve (AUC)
were calculated. The diagnostic performance including
sensitivity, specificity, positive and negative predictive
values and accuracy of miR-200c quantification was also
estimated [36]. The potential correlation among blood
miRNA levels and the clinical and pathological features
of the study subjects were analysed. The normality of
the distribution of miRNA expression was analysed
using the Kolmogorov-Smirnov test. Thus, parametric or
non-parametric statistics were used, as appropriate. The
relationships between miR-200c levels and the quantita-
tive clinical variables were analysed using the Pearson
correlation.
Progression-free survival (PFS) was measured as the

time between the baseline blood sampling for miRNA
analysis and the documentation of first tumour progres-
sion, based on clinical and radiological findings, or death
(events). Overall survival (OS) was measured from the
time at which the baseline blood sample was obtained to
the date of death from any cause or date of last follow-
up. The patients who were alive and progression-free at
the time of analysis were censored by using the time be-
tween the blood assessment and their most recent
follow-up evaluations. The distributions of time-to-event
end points, namely PFS and OS, were estimated using
the Kaplan-Meier method and compared using the
Breslow-Wilcoxon test.
Multivariate survival analyses (PFS and OS) were

performed using Cox regression models. We estimated
hazard ratios (HRs), 95% CI and p values. All statis-
tical tests were two-sided and p values less than 0.05
were considered significant. SPSS Statistics 19.0 for
Windows (IBM Corporation, Armonk, NY, USA, 2011)
and Graph Pad Prism 5 (GraphPad Software, La Jolla,
CA, USA, 2007) were used for data analyses.

Results
The miR-200 family of microRNAs was highly expressed in
gastric cancer
To investigate the differential expression levels of the
miR-200 cluster, we used real-time PCR to analyse the
expression levels of miR-200a, 200b, 200c and miR-141
in total RNA extracted from the GC cell lines OE-19
and MKN-45. We compared the miRNA expression
profiles, calculated using REST as described, with those
of normal human blood (a control group consisting of
pooled RNA obtained from 19 healthy donor blood
samples). The relative expression ratios of every target
miRNA were significantly higher in the GC cell lines
compared with the control blood. In OE-19 cells, the
miRNAs were upregulated by a mean factor of
6.61x105, 9.99 x103, 4.47 x105 and 2.54 x105 for miR-
200c (p < 0.001), 141 (p = 0.018), 200a (p < 0.001) and
200b (p < 0.001), respectively. In MKN-45 cells, the
miRNAs were upregulated by a mean factor of 4.94
x105, 5.79 x103, 2.86 x105 and 1.30 x105 for miR-200c
(p = 0.033), 141 (p < 0.001), 200a (p < 0.001) and 200b
(p < 0.001), respectively. Thus, the highest fold-change
observed in the GC cell lines relative to control blood
was 5.78 x105 for miR-200c. In addition to the miRNA
expression data analysis obtained by REST, we com-
pared the raw Cq data for every miRNA in the control
blood and gastric cancer cell lines. In the blood, the
mean Cq was lower for miR-141 (Cq = 28) compared
with miR-200a (Cq = 35), 200b (Cq = 35) and 200c
(Cq = 35). These differences were significant (ANOVA,
p < 0.001; Bonferroni post hoc test, p < 0.001) suggesting
an increased background miR-141 expression in non-
tumour blood relative to the other miR-200 family
members. In the GC cell lines, the mean Cqs were 15.3,
16.7, 17.7 and 16.1 for miR-141, 200a, 200b and 200c,
respectively, without significant differences (ANOVA,
p = 0.133; Figure 1).
To ascertain whether the miR-200 cluster signature dif-

fers between GC and non-tumour mucosa and between

http://www.ebi.ac.uk/arrayexpress/


Figure 1 Real-time PCR of the miR-200 family in control blood and gastric cancer cell lines. The raw quantification cycle (Cq) data for the
miR-200 cluster in the control blood samples (n = 19) and gastric cancer cell lines (OE-19 and MKN-45) are depicted. In the blood, the mean Cq
was lower for miR-141 (Cq = 28) compared with those for miR-200a (Cq = 35), 200b (Cq = 35) and 200c (Cq = 35; ANOVA, p < 0.001; Bonferroni
post hoc test, p < 0.001). In the GC cell lines, the mean Cqs were 15.3, 16.7, 17.7 and 16.1 for miR-141, 200a, 200b and 200c, respectively, without
significant differences (ANOVA, p = 0.133). The red boxes indicate control blood samples, while the light-blue boxes indicate the gastric cancer
cell lines.
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the two histological subtypes of GC, the expression pro-
files were retrieved from Ueda et al. [10]. We observed
that the miR-200 family was not differentially expressed
in the paired non-tumour mucosa and cancer samples.
Furthermore, miR-141, 200a, 200b and 200c were not
differentially expressed between the GC histological sub-
types (diffuse and intestinal). Additional file1: Figures S1,
S2 and Additional File 1: Tables S1, S2.

Patients and clinical data
From November 2006 to July 2010, 52 patients with his-
tologically proven GC were consecutively recruited for
this study. The clinical characteristics of the patients are
shown in Table 1. The control cohort included 15 cases.
The mean age was 65.3 years (standard error of the
mean [SEM], 1.9; range, 49 to 74 years) in the control
group and 65.9 years (SEM, 1.32; range, 43 to 85) in the
patient group (t test, p = 0.82). The ratio of males to
females was similar among the controls and the patients
(Yates-corrected χ2, p = 0.07).
The blood was obtained after R0 surgery in 20 patients

(38.5%). In 32 patients, the blood samples were obtained
in the presence of residual or metastatic disease, both of
which were categorised as R2 at the time of blood sam-
pling. In the patients receiving surgery (71.2%; 37/52),
the number of lymph nodes analysed was 19 (range, 0–
76; St. D, 16.2). Chemotherapy was administered to 44
patients (84.6%).
All patients were followed until death or study com-
pletion. The last date of follow-up for the survivors was
September 5, 2011. Disease progression events occurred
in 38 patients (73.1%). The median PFS was 6 months
(95% CI, 1.4 to 10.6 months). There were 7 relapses
among stage I–III patients and 31 progressions of meta-
static disease. The median OS was 15 months (95% CI,
11.1 to 18.9 months) and 35 patients (67.3%) died of
advanced disease. Most of the PFS events (29/38; 76.3%)
and OS (18/35; 51.4%) events occurred in the first
9 months of follow-up. The mean (SEM) follow-up time
for the patients still alive at the time of the analysis was
26.3 (3.7) months (median, 24 months; range, 6 to
53 months).

Expression of miRNA in blood samples
As described above, we found that miR-200c was not
only upregulated in GC cell-lines compared with control
blood, it was expressed at the highest levels of all miR-
200 family members. Thus, miR-200c was selected for
clinical validation.
Real-time quantitative assessment of miR-200c was

performed using 67 blood samples (52 patients and
15 controls). The mean relative miR-200c expression
(Figure 2) was 16.2 (SEM, 5.6; CI 95%, 4.1 to 28.3) in
controls, 90.3 (SEM, 17.4; CI 95%, 53.9 to 126.6) in stage
I-III patients and 114.6 (SEM, 16.3; CI 95%, 81.4 to
114.9) in stage IV GC patients (p = 0.018; Kruskal-Wallis



Table 1 Patient characteristics (n = 52)

Characteristic n %

Median (range) age, yrs 65.9 (42–85)

Gender

Women 10 19

Men 42 81

ECOG

0-1 37 71.2

2 10 19.2

Location

Proximal, upper third 13 25

Distal 36 69.2

Multicentric 3 5.8

Stage

I-II 9 17.3

III 12 23.1

IV 31 59.6

Lymph Nodes

Negative 9 17.3

Positive 24 46.2

Histological type

Intestinal 28 53.8

Diffuse 21 40.4

Mixed 3 5.8

R Status

R0 20 38.5

R1-R2 32 61.5

Grade

Low 21 40.4

High 27 51.9

Vascular / Perineural Invasion

Unknown 22 42.3

No 11 21.2

Yes 19 36.5

Abbreviations: ECOG: Eastern Cooperative Oncology Group performance
status. Residual Status (R): R0, no residual tumour; R1-2 microscopic or
macroscopic residual tumour.

Figure 2 Real time PCR of miR-200c in blood samples. The
graph depicts the increasing relative expression levels for the mean
blood expression levels of miR-200c (Kruskal-Wallis test, p =0.018)
from controls (n = 15) and gastric cancer samples (n = 52). Significant
differences were observed between the blood expression levels of
miR-200c in each TNM stage subgroup and the control group
(Bonferroni post hoc test: stage I-III vs control, *p = 0.018; stage IV
vs control, **p < 0.001). MiR-200c was measured in triplicate using
qRT-PCR and normalised to U6 snRNA and 5S rRNA. The horizontal
bar denotes the mean value for each group.

Figure 3 The role of blood miR-200c in gastric cancer
diagnosis. The receiver-operating characteristic (ROC) curve analysis
using blood miR-200c expression levels for discriminating gastric
cancer (n = 52) and controls (n = 15) is shown. The area under the
ROC curve is shown [AUC 0.715 (95% CI, 0.597–0.833); p = 0.012;
cutoff value is 62.4; sensitivity, 65.4%; specificity, 100%].
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test. Bonferroni post hoc test: stage I-III vs control, p =
0.018; stage IV vs control, p < 0.001). The confidence
interval with the alpha level of significance at 99% esti-
mated using the Monte Carlo test was 0.015 to 0.022.
An ROC curve was constructed (Figure 3). Comparing

the relative miR-200c levels in controls and patients, the
AUC was 0.715 (95% CI, 0.597–0.833; p = 0.012). Accord-
ing to the ROC curve, the relative blood level of miR-
200c of 62.4 was defined to be the optimal cutoff value
for differentiating GC patients and controls (Youden's
index). With this cutoff value for miR-200c, the sensitivity,
specificity, positive and negative predictive values and
accuracy values of 65.4% (95% CI, 50.8 to 77.7), 100%
(95% CI, 74.7 to 99.4), 100% (95% CI, 87.4 to 99.7),
45.5% (95% CI, 28.5 to 63.4) and 73.1% (95% CI, 60.7 to
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82.9), respectively, were achieved. The relative expression
values for miR-200c in blood above this cutoff point were
found in 17.6% of stage I-II patients, in 20.6% of stage III
patients and in 67.7% of stage IV GC patients (p < 0.001;
exact test). These findings suggested that elevated blood
miR-200c could be detected in the early stages of GC
and therefore facilitate early disease detection.

Clinical and pathological characteristics and miR-200c
levels in blood
The clinical and pathological characteristics and the
miR-200c expression levels in the blood from cancer
patients are shown in Table 2. The relative expression
levels for miR-200c in the blood of GC patients were not
associated with any of the parameters analysed. Further-
more, the percentage of patients with miR-200c levels
above its mean value (mean, 104.8; SEM, 12) was not
associated with clinical and pathological characteristics.
To explore the possible influence of recent surgical pro-

cedures on the circulation of miRNA, we analysed miR-
200c levels according to the time interval from surgery
and blood sampling. The median time from surgery to
blood sampling for miRNA quantification was 6 weeks
(mean, 19.1 weeks; SEM, 5.5; range, 2 to 155 weeks).
There were no significant differences in miR-200c levels
according to time intervals (< 6 or ≥ 6 weeks) from the last
surgery adjusted for tumour stage (ANOVA, p = 0.284).

Prognostic significance of miR-200c levels in blood
The correlations of potential prognostic factors and
miR-200c levels in the blood in gastric cancer patients
are shown in Table 3. There was only a significant cor-
relation (Pearson’s r = 0.438, p = 0.016) between miR-
200c levels and the number of lymph node metastases.
To generate survival curves, we converted continuous

miR-200c expression levels measured using qRT-PCR to
a dichotomous variable, using its mean levels of expres-
sion as a threshold (10). Using this approach, miR-200c
was overexpressed in the blood of 53.8% (28/52) of
patients. The mean values (with SEM) in the low and
high expression groups for miR-200c were 23.9 (7.9) and
174.1 (8.5), respectively (Mann–Whitney test, p < 0.001).
The percentage of patients with miR200c overexpression
tended to increase with TNM stage: 33.3% (3/9) in stage
I-II patients, 50% in stage III patients (6/12) and 61.3%
(19/31) in stage IV patients (p = 0.076).
The Kaplan-Meier curves for patient OS and PFS cate-

gorised according to miR-200c expression levels in the
blood are shown in Figure 4. The increased blood ex-
pression of miR-200c was significantly associated with a
poor overall survival (Breslow-Wilcoxon text; p = 0.016).
The median and mean OS for the group with high miR-
200c expression levels were 9 months (95% CI, 1.7–16.3)
and 17.4 months (95% CI, 11.2–23.6), respectively. In
the group with low miR-200c blood expression levels, the
median OS was 24 months (95% CI, 8.1–39.9) and the
mean OS was 29.2 months (95% CI, 20.9–37.6).
With regards to PFS, the median estimate for those

patients with low levels of miR-200c in the blood was
11 months (95% CI, 7.9 to 14.1). In contrast, the median
PFS was 4 months (95% CI, 1.8 to 6.2) in patients with
high miR-200c levels (Breslow-Wilcoxon test; p = 0.044).
The relative strength of blood expression levels of miR-

200c as an independent prognostic factor was evaluated
by performing a Cox multivariate analysis. The details of
this analysis are listed in Table 4. With the inclusion of
miR-200c expression levels in the model, the independent
predictors of PFS were as follows: stage IV disease (HR =
5.52; p = 0.005), residual disease (HR = 4.29; p = 0.023);
and miR-200c overexpression (HR = 2.27; p = 0.028).
Similar results were achieved for the prediction of OS in-
cluding stage IV disease (HR = 8.6; p < 0.001), weight loss
higher than 10% (HR = 2.38; p = 0.024) and miR-200c
overexpression (HR = 2.24; p = 0.028) in the model. Re-
sidual disease, Eastern Cooperative Oncology Group
(ECOG) performance status and age were not independ-
ent prognostic factors for OS.
To further explore the relationship between miR-200c

expression levels and outcomes, we estimated the hazard
ratios associated with the miR-200c level as a continuous
variable by performing Cox multivariate regression mod-
els. Concordant results were achieved for the prediction
of PFS, considering miR-200c expression levels as a con-
tinuous variable (HR = 1.004; 95% CI; p = 0.045) in the
multivariate Cox model including stage IV and residual
disease. Likewise, the risk of death was higher with in-
creasing miR-200c relative blood expression levels (HR =
1.007; 95% CI, 1.003 to 1.012; p = 0.003) independent of
stage and weight loss.
Discussion
Accumulating reports have indicated that miRNAs are
detectable in blood and that circulating miRNAs have
the potential to be new biomarkers in patients with dif-
ferent diseases including cancer. Circulating miRNAs
must demonstrate different hallmark characteristics to
considered reliable biomarkers [15,39]: (i) stable and
readily quantifiable in clinical samples; (ii) expressed by
cancer cells at moderate or high levels; (iii) present at
undetectable or very low levels in specimens from indi-
viduals without cancer; (iv) provide a predictive or prog-
nostic clinical information; and (v) exhibit biological
functions mechanistically linked to tumour progression.
Several studies have explored the use of miRNA ex-

pression levels in gastric tissues, sera and plasma sam-
ples to improve the diagnosis or prediction of GC
[40-46]. Most reports focused on the diagnostic potential



Table 2 The distribution of clinical and pathological parameters and the levels of miR-200c in blood

Parameter n miR-200c mean (SEM) p value High miR-200c n (%) p value

Age (y) 0.985 0.0895*

< 70 32 100.3 (14.1) 17 (53.1%)

≥≥≥≥≥≥≥≥≥ 70 20 112 (21.9) 11 (55%)

Gender 0.692** 1***

Male 42 107.3 (13.5) 23 (54.8%)

Female 10 94.2 (26.8) 5 (50%)

Location 0.742** 1***

Proximal, upper third 13 120.0 (31.1) 7 (53.8%)

Distal 36 98.5 (12.8) 19 (52.8%)

Multicentric 3 114.2 (58.3) 2 (66.7%)

Stage 0.211 0.191*

I-III 21 90.3 (17.4) 9 (42.9%)

IV 31 114.6 (16.3) 19 (61.3%)

pT 0.683 0.693***

pT1-T2 18 93.2 (31.6) 13 (72.2%)

pT3-T4 16 95.9 (17.6) 13 (81.3%)

pN 0.516 0.259***

Node Negative 9 67.4 (28.4) 3 (33.3%)

Node Positive 24 115.9 (18.6) 14 (58.3%)

Histological type 0.179 0.246*

Intestinal 28 86.5 (15.1) 13 (46.4%)

Diffuse 24 126.2 (18.5) 15 (62.5%)

ECOG 0.263 0.481***

0-1 37 94.2 (15.5) 20 (54.1%)

2 10 147.1 (56.2) 7 (70%)

Residual disease (R) 0.113 0.312*

R0 20 89.7 (18.2) 9 (4%)

R1-2 32 120.4 (27.9) 19 (59.4%)

Number of Metastatic sites 0.551** 0.753***

0 23 95.4 (16.5) 11 (47.8%)

1 21 113.2 (21.1) 12 (57.1%)

≥≥≥≥≥≥≥≥≥ 2 8 109.8 (31.1) 5 (62.5%)

Grade 0.405 0.146*

Low 21 73.6 (20.9) 8 (38.1%)

High 27 116.9 (23.1) 16 (59.3%)

Vascular / Perineural Invasion 0.914 0.705*

No 11 103.3 (22.8) 5 (45.5%)

Yes 19 97.5 (22.8) 10 (52.6%)

Neutrophils (10-9/L) 0.705 0.696*

≤≤≤≤≤≤ 7.5 39 104.4 (13.1) 22 (56.4%)

>7.5 12 114.9 (29.4) 6 (50%)

The miR-200c relative expression levels (REL) are shown in arbitrary units. The levels of miR-200c were considered high when the REL was above the mean.
Residual disease (R) was categorised as R0 when no residual disease was present and as R1-2 when microscopic or macroscopic residual disease was found.
Mann–Whitney test. * Pearson χ2. **Kruskal-Wallis test. *** Fisher's exact test.
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Table 3 The correlations of prognostic factors and miR-
200c levels in the blood of gastric cancer patients

n r p value

Weight loss (%) 51 0.082 0.568

Number of positive lymph nodes 30 0.438 0.016

LDH 52 - 0.023 0.872

Albumin 51 - 0.130 0.365

Alkaline Phosphatase 52 - 0.041 0.770

Neutrophil counts 51 0.132 0.356

Computed using the Pearson correlation test.
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of quantifying miRNAs in blood; however, data regarding
their possible prognostic role in solid tumours including
GC are limited, as shown in Additional file 1, Table S3.
There are two main observations in the present study.

First, miR-200c levels in the blood were significantly
increased in GC patients compared with controls. These
increased values were highly specific for a GC diagnosis
and were associated with disease stage. Second, the
blood expression levels of a single microRNA, miR-200c,
provided prognostic information for patients with GC
independent of a comprehensive panel of other estab-
lished clinical predictors.
The miRNA-200 cluster has been shown to regulate

the epithelial-mesenchymal plasticity that may be cru-
cial at different stages of metastasis through direct tar-
geting of the ZEB–cadherin 1 axis [21-25]. However,
in vitro and functional studies have yielded conflicting
results regarding the net effect of miR-200 deregula-
tion in the metastatic process [47-50]. Recent reports
have indicated that tumour colonisation at metastatic
sites might be enhanced by the expression of miR-
200c. The xenograft model data have suggested that al-
though miR-200 expression can hinder the intravasa-
tion of tumour cells, those that reach the circulation
may be more proficient at colonising distant organs
[47,48]. Our findings are consistent with these experi-
mental data and with the clinical correlations observed
between the up-regulation of miR-200c in tumours
and poor prognosis in individuals with colorectal
adenocarcinoma [51], oesophageal squamous cell car-
cinoma [52] and breast cancer [48,53].
In spite of the growing evidence highlighting its rele-

vance in various cancers, very few studies have systemat-
ically explore the role of the miR-200 family in GC.
MiR-141 was significantly down regulated in gastric can-
cer tissues compared with pair-matched adjacent non-
tumour tissues [54,55]. Nevertheless, a recent report
[56] found that miR-200a and miR-141 were significantly
overexpressed in gastric cancer compared with those in
normal gastric tissue. In addition, high miR-200a tumour
expression was associated with a poor OS. Kurashige
et al. have recently shown [57] that the downregulation
of miR-200b in GC was associated with diffuse histologic
type, depth of tumor, tumor size, lymph node metastasis,
and lymphatic invasion. The upregulation of miR-200b
was correlated with increased E-cadherin and low ZEB2.
However, there were no differences in the tumour ex-
pression of miR-200c among histological types or other
clinicopathological parameters.
To ascertain whether the miR-200 family expression

profile can differ between GC and non-tumour mucosa
and to analyse the association among miR-200a, 200b,
200c and miR-141 and histological characteristics, we
used a large, public microarray database. The results of
our in silico analyses demonstrated that the expression
of miR-200a, -b, -c and miR-141 were similar in non-
tumour gastric mucosae and gastric tumour tissue.
Furthermore, miR-200a, -b, -c and miR-141 were not dif-
ferentially expressed between intestinal and diffuse types
of gastric carcinoma. In that sense, the miR-200 signature
in GC was validated on an external data set. In our study,
as shown in Table 2, there were no significant differences
in the blood levels of miR-200c among histological types
or other clinicopathological parameters. Similar data
have been recently reported [57]. These findings suggest
that elevated blood miR-200c levels can be detected
throughout the wide spectrum of gastric adenocarcin-
omas and therefore underscore its potential role as a
clinical biomarker.
However, tumour or cellular miRNA-expression pat-

terns can differ from miRNA patterns released into the
blood [58,59]. In addition, potential differences in the
microRNAs expression profile between primary tumours
and corresponding CTC or matching clinical metastases
have not been systematically investigated. In that sense,
the miR-200-a, -b and -c and miR-429 levels were
increased in lung metastases compared to primary breast
tumours [48]. Also, the expression of miR-200c/miR-141
cluster was significantly upregulated in liver metastasis
from colorectal cancer, as compared with that in primary
tumours [50]. Thus, circulating miRNAs may not always
be directly associated with the changes occurring in
primary tumor tissues.
When we considered the different reports regarding

the potential diagnostic and clinical relevance of the
blood-borne miRNA expression in cancer, a considerable
degree of inter-study heterogeneity was noticed. Differ-
ences in the detection and quantification methods
(microarrays, qRT-PCR and high-throughput sequencing
technology), the types and numbers of miRNAs evalu-
ated (pre-miRNA or mature form, expression profile or
a single marker) and sample sources and timing (serum,
plasma or blood cells obtained pre- or post-operatively),
as well as in the clinical and pathological data of the
included patients ought to be considered as potential
causes of heterogeneity.



Figure 4 miR-200c expression levels measured in the peripheral blood are associated with poor prognosis in gastric cancer patients.
Kaplan-Meier curves showing (a) the overall survival (OS) and (b) the progression-free survival (PFS) of 52 subjects with high or low blood
expression levels of miR-200c. Continuous miR-200c expression levels measured using qRT-PCR were converted to a dichotomous variable using
the mean level of expression as a threshold. The p values were computed using the Breslow-Wilcoxon test.
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At present, there is no agreement on the most advan-
tageous source from which to isolate circulating miRNA
and the use of serum or plasma over whole blood for
systemic miRNA analysis is debatable. One of the crucial
problems is the efficient and reproducible extraction of
small amounts of miRNA from plasma or serum. There-
fore, higher yields of miRNAs have been consistently
obtained from whole blood samples compared with
matched serum or plasma samples and lower quantifica-
tion cycles were performed in whole blood compared
with matched serum and plasma samples in qRT-PCR
experiments [60].
Recent reports have indicated that blood cells are

major contributors of circulating miRNA [61]. Hence,
one can hypothesise that increased levels of expression
of epithelial-specific miRNAs in blood, including miR-



Table 4 Multivariate analyses (n = 52)

Wald p value Hazard ratio 95% CI

Progression-free survival (PFS)

Stage IV disease 7.805 0.005 5.52 1.665 18.285

High miR-200c 4.835 0.028 2.27 1.093 4.712

Residual disease (R) status 5.195 0.023 4.29 1.226 14.993

Overall survival (OS)

Stage IV disease 20.469 0.000 8.60 3.385 21.831

High miR-200c 4.827 0.028 2.24 1.091 4.614

Weight loss > 10% 5.074 0.024 2.38 1.119 5.048

The levels of miR-200c were considered high when the relative expression level was above the mean. Residual disease (R) was categorised as R0 when no residual
disease was present and as R1-2 when microscopic or macroscopic residual disease was found.
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200c, might indicate the circulation of tumour cells.
However, the origins of circulating miRNAs are not yet
clearly understood. In theory, analysis of miRNAs
obtained from whole blood may be advantageous,
detecting not only those miRNA derived from circulat-
ing blood cells comprising tumour cells but also those
secreted in subcellular particles such as exosomes or
those associated with RNA binding proteins and diverse
tissues [62,63].
Any PCR-based technique still has the disadvantage of

potentially detecting minimal amounts of miRNA ex-
pression in a non-disease-specific manner. Some of the
proposed miRNA cancer biomarkers have been found to
be highly expressed in one or more blood cell types and
plasma levels of these miRNA have been correlated to
blood cell counts [64]. Pritchard et al. reported that
miR-200c was found in the blood and blood cells of con-
trols, with the highest expression in neutrophils. How-
ever, patients with diverse metastatic cancer and severely
ill conditions that could be considered as confounding
factors were included in this study as “controls”. Con-
versely, we did not find any correlation between miR-
200c levels and neutrophil counts in our series. In
addition, miR-200c levels did not differ in subgroups
defined according to neutrophil counts.
From a clinical perspective, assessment of miRNAs in

the PB obtained after definitive loco-regional treatment
reflects the “minimal residual disease” status that might
better predict the clinical behaviour and/or therapeutic
response. Postoperative sampling time combines, in the-
ory, the baseline level of CNA, the potential release of
CTC due to the surgical manipulation and the rapid
death of in transit cells within the blood stream but with
reduced survival ability. Our study shows that increased
miR-200c levels are detected even in patients with very
low tumour burdens (i.e., early-stage disease and after
potentially curative R0 surgical resections).
Remarkably, we found that levels of miR-200c mea-

sured in the PB of GC patients independently correlate
with OS and PFS. A clear clinical association of the
expression levels of a single circulating miRNA (miR-
200c) with poor survival outcomes indicated by multi-
variate analysis has been demonstrated. However, large
prospective and follow up studies will be necessary in
the near future to confirm the clinical relevance of circu-
lating miRNAs, including miR-200c, as independent
prognostic indicators for cancer.

Conclusions
Beyond confirming initial reports, our study yielded the
following evidence: (i) epithelial-derived miRNAs can be
quantified in the whole-blood; (ii) the blood levels of a sin-
gle epithelial and tumour-expressed miRNA, miR-200c,
can distinguish, with significant specificity and sensitivity,
patients with GC from healthy controls and (iii) remark-
ably, increased expression levels of miR-200c in blood
were significantly associated with poor progression-free
and overall survivals. Our study indicates unique results
on its potential prognostic value that provide a firm basis
for further investigation of miRNAs as blood-based cancer
predictive and prognostic biomarkers.

Additional file

Additional file 1: Figure S1. Box plots of the miR-200 s family of
microRNAs, miR-148a and miR-21 expressions in gastric cancer samples
and normal gastric mucosae. Tissue miRNA concentrations were
significantly lower for miR-148a (p < 0.0001) whereas miR-21 was
significantly higher (p < 0.0001) in the gastric cancer samples compared
to those in normal gastric mucosae. MiR-200 s were not differentially
expressed in the paired non-tumour mucosa and cancer samples. MiR-
148a and miR-21 were among the differentially expressed microRNAs in
gastric cancer signature as defined by Ueda T, et al. The upper and lower
limits of the boxes and the lines inside the boxes indicate the 75th and
25th percentiles and the median respectively. The upper and lower
horizontal bars denote the 90th and 10th percentiles respectively. Table
S1. MiR-200 s family of microRNAs, miR-148a and miR-21 expressions in
the gastric cancer samples compared to those in normal gastric
mucosae. Figure S2. Box plots of the miR-200 s family of microRNAs,
miR-148a and miR-21 concentrations in gastric cancer samples according
to histological type: diffuse or intestinal. Tissue miRNA concentrations
were significantly higher for miR-148a (p = 0.004) and miR-21 (p = 0.011)
in the diffuse type compared to intestinal type. MiR-200 s were not
differentially expressed according to histological type. MiR-148a and miR-

http://www.biomedcentral.com/content/supplementary/1479-5876-10-186-S1.doc
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21 were among the differentially expressed microRNAs in gastric cancer
signature as defined by Ueda T, et al. The upper and lower limits of the
boxes and the lines inside the boxes indicate the 75th and 25th
percentiles and the median respectively. The upper and lower horizontal
bars denote the 90th and 10th percentiles respectively. Table S2. MiR-
200 s family of microRNAs, miR-148a and miR-21 expressions in the
gastric cancer samples according to histological type: diffuse or intestinal.
Table S3.. Studies assessing miRNAs expression in blood among gastric
cancer patients.
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