Open Access

Main roads to melanoma

  • Giuseppe Palmieri1,
  • Mariaelena Capone2,
  • Maria Libera Ascierto2,
  • Giusy Gentilcore2,
  • David F Stroncek3,
  • Milena Casula1,
  • Maria Cristina Sini1,
  • Marco Palla2,
  • Nicola Mozzillo2 and
  • Paolo A Ascierto2Email author
Journal of Translational Medicine20097:86

DOI: 10.1186/1479-5876-7-86

Received: 30 June 2009

Accepted: 14 October 2009

Published: 14 October 2009

Abstract

The characterization of the molecular mechanisms involved in development and progression of melanoma could be helpful to identify the molecular profiles underlying aggressiveness, clinical behavior, and response to therapy as well as to better classify the subsets of melanoma patients with different prognosis and/or clinical outcome. Actually, some aspects regarding the main molecular changes responsible for the onset as well as the progression of melanoma toward a more aggressive phenotype have been described. Genes and molecules which control either cell proliferation, apoptosis, or cell senescence have been implicated. Here we provided an overview of the main molecular changes underlying the pathogenesis of melanoma. All evidence clearly indicates the existence of a complex molecular machinery that provides checks and balances in normal melanocytes. Progression from normal melanocytes to malignant metastatic cells in melanoma patients is the result of a combination of down- or up-regulation of various effectors acting on different molecular pathways.

Molecular complexity of melanoma pathogenesis

Melanocytic transformation is thought to occur by sequential accumulation of genetic and molecular alterations [1, 2]. Although the pathogenetic mechanisms underlying melanoma development are still largely unknown, several genes and metabolic pathways have been shown to carry molecular alterations in melanoma.

A primary event in melanocytic transformation can be considered a cellular change that is clonally inherited and contributes to the eventual malignancy. This change occurs as a secondary result of some oncogenic activation through either genetic (gene mutation, deletion, amplification or translocation), or epigenetic (a heritable change other than in the DNA sequence, generally transcriptional modulation by DNA methylation and/or by chromatin alterations such as histone modification) events. The result of such a change would be the generation of a melanocytic clone with a growth advantage over surrounding cells. Several pathways have been found to be involved in primary clonal alteration, including those inducing the cell proliferation (proliferative pathways) or overcoming the cell senescence (senescence pathway). Conversely, reduced apoptosis is highly selective or required for the development of advanced melanoma (apoptotic pathways).

Proliferative pathways

The MAPK-ERK pathway (including the cascade of NRAS, BRAF, MEK1/2, and ERK1/2 proteins), a major signaling cascade involved in the control of cell growth, proliferation and migration, has been reported to play a major role in both the development and progression of melanoma (the increased activity of ERK1/2 proteins, which have been found to be constitutively activated in melanomas mostly as a consequence of mutations in upstream components of the pathway) and seems to be implicated in rapid melanoma cell growth, enhanced cell survival and resistance to apoptosis [3, 4].

A less common primary pathway which stimulates cell proliferation, without MAPK activation, seems to be the reduction of RB (retinoblastoma protein family) activity by CyclinD1 or CDK4 amplification or RB mutation (impaired RB activity through increased CDK4/cyclin D1 could substitute for the MAPK activation and initiate clonal expansion) [4, 5].

Senescence pathways

Cell senescence is an arrest of proliferation at the somatic level, which is induced by telomere shortening, oncogenic activation, and/or cellular stress due to intense proliferative signals [6, 7]. In recent years, a common mechanism for the induction of cell senescence has been described: a progressive-reduction in the length of telomeres (often, in conjunction with overactivity of specific oncogenes - such as MYC and ATM) seems to exert DNA damage signaling with activation of the p16CDKN2A pathway [8, 9]. Nevertheless, cancers including melanomas cannot grow indefinitely without a mechanism to extend telomeres. The expression and activity of telomerase is indeed up-regulated in melanoma progression [10]. This evidence strongly suggests that both telomere length and p16CDKN2A act in a common pathway leading to growth-arrest of nevi. In particular, the p16CDKN2A protein acts as an inhibitor of melanocytic proliferation by binding the CDK4/6 kinases and blocking phosphorylation of the RB protein, which leads to cell cycle arrest [11]. Dysfunction of the proteins involved in the p16CDKN2A pathway have been demonstrated to promote uncontrolled cell growth, which may increase the aggressiveness of transformed melanocytic cells [12].

Apoptotic pathways

The p14CDKN2A protein exerts a tumor suppressor effect by inhibiting the oncogenic actions of the downstream MDM2 protein, whose direct interaction with p53 blocks any p53-mediated activity and targets the p53 protein for rapid degradation [13]. Impairment of the p14CDKN2A-MDM2-p53 cascade, whose final effectors are the Bax/Bcl-2 proteins, has been implicated in defective apoptotic responses to genotoxic damage and, thus, to anticancer agents (in most cases, melanoma cells present concurrent high expression levels of Bax/Bcl-2 proteins, which may contribute to further increasing their aggressiveness and refractoriness to therapy) [14, 15].

The main genes and related pathways in melanoma

BRAF

Exposure to ultraviolet light is an important causative factor in melanoma, although the relationship between risk and exposure is complex. Considerable roles for intermittent sun exposure and sunburn history in the development of melanoma have been identified in epidemiologic studies [16].

The pathogenic effects of sun exposure could involve the genotoxic, mitogenic, or immunosuppressive responses to the damage induced in the skin by UVB and UVA [17, 18]. UVB represents only a small portion of the solar radiation reaching the earth's surface (<5%) but it can directly damage DNA through mutagenesis at dipyrimidine sites, inducing apoptosis in keratinocytes. UVA indirectly damages DNA primarily through the generation of reactive oxygen species and formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine. These reactive oxygen species subsequently damage DNA especially by the formation of G>T transversion mutations [19].

It is controversial as to whether the UVB or the UVA component of solar radiation is more important in melanoma development [20, 21]. One of the major reasons for this uncertainty is that sunlight is a complex and changing mix of different UV wavelengths, so it is very difficult to accurately delineate the precise lifetime exposures of individuals and entire populations to UVA and UVB from available surrogates, such as latitude at diagnosis or exposure questionnaires [19]. A significant body of epidemiological evidence suggests that both UVA and UVB are involved in melanoma causation [2024].

The clinical heterogeneity of melanoma can probably be explained by the existence of genetically distinct types of melanoma with different susceptibility to ultraviolet light [5]. Cutaneous melanomas, indeed, have four distinct subtypes:

- Superficial Spreading Melanoma (SSM), on intermittently exposed skin (i.e., upper back);

-Lentigo Maligna Melanoma (LMM), on chronically exposed skin;

-Acral Lentiginous Melanoma (ALM), on the hairless skin of the palms and soles;

-Nodular Melanoma (NM), with tumorigenic vertical growth, not associated with macular component [25].

From a molecular point of view, the signaling cascades involving the melanocortin-1-receptor (MC1R) and RAS-BRAF genes have been demonstrated to represent a possible target of UV-induced damage.

The MC1R gene encodes the melanocyte-stimulating hormone receptor (MSHR), a member of the G-protein-coupled receptor superfamily which normally signals the downstream BRAF pathway by regulating intracellular levels of cAMP [26, 27]. The MC1R gene is remarkably polymorphic in Caucasian populations, representing one of the major genetic factors which determines skin pigmentation. Its sequence variants can result in partial (r) or complete (R) loss of the receptor's signalling ability [28, 29]. The MC1R variants have been suggested to be associated with red hair, fair skin, and increased risk of both melanoma and non-melanoma skin cancers [29, 30].

RAS and BRAF are two important molecules belonging to the mitogen-activated protein kinase (MAPK) signal transduction pathway, which regulates cell growth, survival, and invasion. MAPK signaling is initiated at the cell membrane, either by receptor tyrosine kinases (RTKs) binding ligand or integrin adhesion to extracellular matrix, which transmits activation signals via the RAS-GTPase on the cell membrane inner surface. Active, GTP-bound RAS can bind effector proteins such as RAF serine-threonine kinase or phosphatidylinositol 3-Kinase (PI3K) [31, 32].

In mammals, three highly conserved RAF genes have been described: ARAF, BRAF, and CRAF (Raf-1). Although each isoform possesses a distinct expression profile, all RAF gene products are capable of activating the MAPK pathway [33, 34]. CRAF and ARAF mutations are rare or never found in human cancers [3537]. This is probably related to the fact that oncogenic activation of ARAF and CRAF require the coexistence of two mutations [34, 36]. The BRAF gene, which can conversely be activated by single amino acid substitutions, is much more frequently mutated in human cancer (approximately 7% of all types). Activating mutations of BRAF have been found in colorectal, ovarian [3], thyroid [38], and lung cancers [39] as well as in cholangiocarcinoma [40], but the highest rate of BRAF mutations (overall, about half of cases) have been observed in melanoma [41].

The most common mutation in BRAF gene (nearly, 90% of cases) is a substitution of valine with glutamic acid at position 600 (V600E) [3]. This mutation, which is present in exon 15 within the kinase domain, activates BRAF and induces constitutive MEK-ERK signaling in cells [3, 42]. The activation of BRAF leads to the downstream expression induction of the microphthalmia-associated transcription factor (MITF) gene, which has been demonstrated to act as the master regulator of melanocytes. Activated BRAF also participates in the control of cell cycle progression (see below) [43].

Activating BRAF mutations have been detected in melanoma patients only at the somatic level [44] and in common cutaneous nevi [45]. Among primary cutaneous melanomas, the highest prevalence of BRAF oncogenic mutations has been reported in late stage tumors (mostly, vertical growth phase lesions) [46, 47]. Therefore, the role of BRAF activation in pathogenesis of melanoma remains controversial.

The presence of BRAF mutations in nevi strongly suggests that BRAF activation is necessary but not sufficient for the development of melanoma (also known as melanomagenesis). To directly test the role of activated BRAF in melanocytic proliferation and transformation, a transgenic zebrafish expressing BRAF-V600E presented a dramatic development of patches of ectopic melanocytes (termed as fish-nevi) [48]. Remarkably, activated BRAF in p53-deficient zebrafish induced the formation of melanocytic lesions that rapidly developed into invasive melanomas, which resembled human melanomas in terms of histological and biological behaviors[48]. These data provide direct evidence that the p53 and BRAF pathways functionally interact to induce melanomagenesis. BRAF also cooperates with CDKN2A, which maps at the CDKN locus and encodes two proteins: the cyclin-dependent kinase inhibitor p16CDKN2A, which is a component of the CyclinD1-RB pathway, and the tumor suppressor p14CDKN2A, which has been functionally linked to the MDM2-p53 pathway (see below). Activating BRAF mutations have been reported to constitutively induce up-regulation of p16CDKN 2Aand cell cycle arrest (this phenomenon appears to be a protective response to an inappropriate mitogenic signal) [4, 49]. In particular, mutant BRAF protein induces cell senescence by increasing the expression levels of the p16CDKN2A protein, which, in turn, may limit the hyperplastic growth caused by BRAF mutations [49]. Recently, it has been demonstrated that other factors, such as those regulated by the IGFBP7 protein, may participate in inducing the arrest of the cell cycle and cell senescence caused by the BRAF activation [5052]. As for p53 deficiency, a genetic or epigenetic inactivation of p16CDKN 2Agene and/or alterations of additional cell-cycle factors may therefore contribute to the BRAF-driven melanocytic proliferation.

The observation that early stage melanomas exhibit a lower prevalence of BRAF mutations than that found in late stage lesions [46, 47] argues against the hypothesis that BRAF activation participates in the initiation of melanoma but seems to strongly suggest that such an alteration could be involved in disease progression. Moreover, similar rates of BRAF mutations have been reported in various histological types of nevi (including congenital, intradermal, compound, and atypical ones) [45], suggesting that the activation of BRAF does not likely contribute to possible differences in the propensity to progression to melanoma among these nevi subsets. Taken together, all of this evidence, strongly suggests that activating BRAF mutations induce cell proliferation and cell survival, which represent two biological events occurring in both melanocytic expansion of nevi and malignant progression from superficial to invasive disease.

Finally, BRAF mutations occur at high frequency in melanomas that are strongly linked to intermittent sun exposure (non Chronic Sun-induced Damage, non-CSD), though sun exposure has not been shown to directly induce the T1796→A transition underlying the V600E change at exon 15. In fact, this transition does not affect a dipyrimidine site and cannot be considered to be the result of a UVB-induced replication error. Further work is needed to better understand the interaction of UV exposure and BRAF mutations. Recently, MC1R variants have been strongly associated with BRAF mutations in non-CSD melanoma, which has lead to the hypothesis that BRAF activation may be somehow indirectly induced by UV radiation [53]. In this regard, mutations in the upstream gene NRAS which occur in about 15% of cutaneous melanomas (NRAS and BRAF mutations are mutually exclusive in the same tumor, suggesting functional redundancy [5, 54]), have been rarely found in melanoma lesions arising in sun-exposed sites; they do not correlate with the degree of sun exposure, histologic subtype, or anatomical site [55, 56].

Other distinct subgroups of melanoma have been shown to harbor oncogenic mutations in the receptor tyrosine kinase KIT. While BRAF mutations are the most common oncogenic mutation in cutaneous melanoma, mucosal melanomas and acral lentiginous melanomas often have wild type BRAF, but may carry mutations in KIT gene (though, the role of such alterations in melanomagenesis are yet to be clearly defined). In most cases, KIT mutations are accompanied by an increase in gene copy number and genomic amplification [57, 58].

CDKN2A and CDK4

The Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A, also called Multi Tumor-Suppressor MTS1) [59] is the major gene involved in melanoma pathogenesis and predisposition. It is located on chromosome 9p21 and encodes two proteins, p16CDKN2A (including exons 1α, 2 and 3) and p14CDKN2A (a product of an alternative splicing that includes exons 1β and 2) [60, 61], which are known to function as tumour suppressors. The p16CDKN2A and p14CDKN2A are simultaneously altered in multiple tumors since most of their pathogenetic mutations occur in exon 2, which is encoded in both gene products. The inactivation of CDKN2A is mostly due to deletion, mutation or promoter silencing (through hypermethylation).

The p16CDKN2A protein inhibits the activity of the cyclin D1-cyclin-dependent kinase 4 (CDK4) complex, whose function is to drive cell cycle progression by phosphorylating the retinoblastoma (RB) protein. Thus, p16CDKN2A induces cell cycle arrest at G1 phase, blocking the RB protein phosphorylation. On this regard, RB phosphorylation causes the release of the E2F transcription factor, which binds the promoters of target genes, stimulating the synthesis of proteins necessary for cell division. Normally the RB protein, through the binding of E2F, prevents the cell division. When the RB protein is absent or inactivated by phosphorilation, E2F is available to bind DNA and promote the cell cycle progression [62].

p14CDKN2A stabilizes p53, interacting with the Murine Double Minute (MDM2) protein, whose principal function is to promote the ubiquitin-mediated degradation of the p53 tumor suppressor gene product [6366]. The shuttling of p53 by MDM2 from nucleus to cytoplasm is required for p53 to be subject to proteosome-mediated degradation. The p53 protein has been named "guardian of the genome", because it arrests cell division at G1 phase to allow DNA repair or to induce apoptosis of potentially transformed cells. In normal conditions, the expression levels of p53 in cells are low. In response to DNA damage, p53 accumulates and prevents cell division. Therefore, inactivation of the TP53 gene results in an accumulation of genetic damage in cells which promotes tumor formation [67]. In melanoma, such an inactivation is mostly due to a functional gene silencing since the frequency of TP53 mutations is low [68]. Different signals regulate p53 levels by controlling its binding with MDM2. Several kinases play this role, catalyzing stress-induced phosphorylation of serine in the trans-activation domain of p53. Moreover, several proteins, including E2F, stabilize p53 through the p14CDKN2A-mediated pathway. The interaction of protein p300 with MDM2 promotes p53 degradation.

Data obtained from genetic and molecular studies over the past few years have indicated that the CDKN2A locus as the principal and rate-limiting target of UV radiation in melanoma formation [69]. CDKN2A has been designated as a high penetrance melanoma susceptibility gene [70]; however, the penetrance of its mutations is influenced by UV exposure [71] and varies according to the incidence rates of melanoma in different populations (indeed, the same factors that affects population incidence of melanoma may also mediate CDKN2A mutation penetrance). The overall prevalence of melanoma patients who carry a CDKN2A mutation is between 0.2% and 2%. The penetrance of CDKN2A mutations is also greatly influenced by geographic location, with reported rates of 13% in Europe, 50% in the US, and 32% in Australia by 50 years of age; and 58% in Europe, 76% in the US, and 91% in Australia by age 80 [72].

CDKN2A mutations are more frequent in patients with a strong familial history of melanoma (three or more affected family members; 35.5%) [73] compared with patients without any history (8.2%). Moreover, the frequency of CDKN2A mutations is also higher in patients with synchronous or asynchronous multiple melanomas (more than two diagnosed lesions, 39.1%; only two melanomas, 10%) [72]. Although families identified with CDKN2A mutations display an average disease penetrance of 30% by 50 years of age and 67% by age 80, studies have shown that melanoma risk is greatly influenced by the year an individual is born, levels of sun exposure, and other modifier genes.

Correlations between the CDKN2A mutation status and melanoma risk factors in North American melanoma-prone families have shown that in addition to the increased risk associated with CDKN2A mutations, the total number of nevi and the presence of dysplastic nevi were associated with a higher risk of melanoma, Sun exposure and a history of sunburn is associated with melanoma risk in melanoma-prone families. In other words, the melanoma risk associated with sunburn was higher in individuals in genetically susceptible families than in non-susceptible individuals. This finding suggests that there are common mechanisms and/or interactions between the CDKN2A pathway and the UV-sensitivity [72]. Many high-risk families exhibit atypical nevus/mole syndrome (AMS) characterized by atypical nevi, increased banal nevi and atypical nevus distribution on ears, scalp, buttocks, dorsal feet and iris. In a study of CDKN2A mutation carriers, a similar distribution was present on buttocks and feet, and in a p16CDKN2A family with a temperature-sensitive mutation, nevi were found to be distributed in warmer regions of the body (head, neck and trunk). This supports the hypothesis that p16CDKN2A mutations play a role in nevus senescence.

The second melanoma susceptibility gene is the Cyclin-Dependent Kinase 4, which is located at 12q13.6, and which encodes a protein interacting with the p16CDKN 2Agene product. CDK4 is a rare high-penetrance melanoma predisposition gene. Indeed, only three melanoma families worldwide are carriers of mutations in CDK4 (Arg24Cys and Arg24His). From a functional point of view, the Arg24Cys mutation, located in the p16CDKN2A-binding domain of CDK4, make the p16CDKN2A protein unable to inhibit the D1-cyclin-CDK4 complex, resulting in a sort of oncogenic activation of CDK4.

PTEN and AKT

The PTEN gene (phosphatase and tensin homolog deleted on chromosome 10) is located at the chromosome 10q23.3 [74] and is mutated in a large fraction of human melanomas. The protein encoded by this gene acts as an important tumor suppressor by regulating cellular division, cell migration and spreading [75], and apoptosis [7678] thus preventing cells from growing and dividing too rapidly or in an uncontrolled way. The PTEN protein has at least two biochemical functions: lipid phosphatase and protein phosphatase. The lipid phosphatase activity of PTEN seems to have a role in tumorigenesis by inducing a decrease in the function of the downstream AKT protein (also knows as protein kinase B or PKB). In particular, the most important effectors of PTEN lipid phosphatase activity are phosphatidylinositol-3,4,5-trisphosphate (PIP3) and phosphatidylinositol 3,4-bisphosphate (PIP2) that are produced during intracellular signaling by the activation of lipid kinase phoshoinosite 3-kinase (PI3K). PI3K activation results in an increase of PIP3 and a consequent conformational change activating AKT [79]. This latter protein is a serine/threonine kinase and belongs to the AKT protein kinase family: AKT1, AKT2, and AKT3. Although all AKT isoforms may be expressed in a different cell type, they share a high degree of structural similarity [8083]. Under physiologic circumstances, the PI3K/PTEN/AKT pathway is triggered by paracrine/autocrine factors (e.g., insulin-like growth factor-I) [84].

Moreover, recent studies have also revealed a role for AKT in the activation of NF-kB which is considered to be an important pleiotropic transcription factor involved in the control of cell proliferation and apotosis in melanoma. Upon activation, NF-kB can regulate the transcription of a wide variety of genes, including those involved in cell proliferation. It has been reported that PTEN expression is lost in melanoma cell lines with high AKT expression, suggesting that the activation of AKT induced by PTEN inactivation or growth factor signaling activation could represent an important common pathway in the progression of melanoma (probably, by enhancing cell survival through up-regulation of NF-kB and escape from apoptosis) [85].

AKT activation stimulates cell cycle progression, survival, metabolism and migration through phosphorylation of many physiological substrates [8690]. Based on its role as a key regulator of cell survival, AKT is emerging as a central player in tumorigenesis. It has been proposed that a common mechanism of activation of AKT is DNA copy gain involving the AKT3 locus, which is found in 40-60% of melanomas. AKT3 expression strongly correlates with melanoma progression, and depletion of AKT3 induces apoptosis in melanoma cells and reduces the growth of xenografts [9193]. Mutations in the gene encoding the catalytic subunit of PI3K (PIK3CA) occur at high frequencies in some human cancers [94], leading to constitutive AKT activation [95] but occur at very low rates (5%) in melanoma [96, 97]. Activated AKT seems to promote cell proliferation, possibly through the down-regulation of the cyclin-dependent kinase inhibitor p27 as well as the up-regulation and stabilization of cyclin D1 [98]. The activation of AKT also results in the suppression of apoptosis induced by a number of stimuli including growth factor withdrawal, detachment of extra-cellular matrix, UV irradiation, cell cycle discordance, and activation of FAS signaling [88, 99101]. The mechanisms associated with the ability of AKT to suppress apoptosis [89, 99101] include the phosphorylation and inactivation of many pro-apoptotic proteins, such as BAD (Bcl-2 antagonist of cell death, a Bcl2 family member [101]), caspase-9 [102], MDM2 (that lead to increased p53 degradation [103105]), and the forkhead family of transcription factors [106], as well as the activation of NF-kB [107]. It has been proposed that UV irradiation induces apoptosis in human keratinocytes in vitro and in vivo, and also activates survival pathways including PIP3 kinase and its substrate AKT, in order to limit the extent of cell death [108]. A direct correlation between radiation resistance and levels of PI3K activity has been indeed described. Although activating mutations of AKT are nearly absent in melanoma (a rare mutation in AKT1 and AKT3 genes has been recently reported in a limited number of human melanomas and melanoma cell lines [109111], the silencing of AKT function by targeting PI3K inhibits cell proliferation and reduces sensitivity of melanoma cells to UV radiation [112].

The lipid phosphatase activity of PTEN protein is able to degrade the products of PI3K [113], suggesting that PTEN functions may directly antagonize the activity of P13K/AKT pathway [114, 115]. As predicted by this model, genetic inactivation of PTEN in human cancer cells leads to constitutive activation of this AKT pathway and mediates tumorigenesis. Numerous mutations and/or deletions in the PTEN gene have been found in tumours including lymphoma; thyroid, breast, and prostate carcinomas;, and melanoma [116118]. PTEN somatic mutations are found in 40-60% of melanoma cell lines and 10-20% of primary melanomas [119]. The majority of such mutations occurs in the phosphatase domain [117, 118]. The contrast between the detection of a low mutation frequency and a higher level of gene silencing in primary melanomas has led to speculate that PTEN inactivation may predominantly occur through epigenetic mechanisms [120]. Several distinct methylation sites have been found within the PTEN promoter and hypermethylation at these sites has been demonstrated to reduce the PTEN expression in melanoma. PTEN is involved in the inhibition of focal adhesion formation, cell spreading and migration as well as in the inhibition of growth factor-stimulated MAPK signaling (alterations in the BRAF-MAPK pathway are frequently associated with PTEN-AKT impairments [8, 121]). Therefore, the combined effects of the loss of the PTEN function may result in aberrant cell growth, escape from apoptosis, and abnormal cell spreading and migration. In melanoma, PTEN inactivation has been mostly observed as a late event, although a dose-dependent down-regulation of PTEN expression has been implicated in early stages of tumorigenesis. In addition, loss of PTEN protein and oncogenic activation of NRAS seem to be mutually exclusive and both alterations may cooperate with the loss of CDKN2A expression in contributing to melanoma tumorigenesis [122].

MITF

Increased interest has been focused on the activity of the microphthalmia-associated transcriptor factor (MITF), which is considered to be the "master regulator of melanocytes" since it seems to be crucial for melanoblast survival and melanocyte lineage commitment.

MITF maps on chromosomre 3p14.1-p12.3 and encodes for a basic helix-loop-helix (hHLH)-leucine zipper protein that plays a role in the development of various cell types, including neural crest-derived melanocytes and optic cup-derived retinal pigment epithelial cells [123]. MITF was first identified in the mouse as a locus whose mutation results in the absence of pigment cells causing white coat color and deafness due to melanocyte deficiency in the inner ear [124]. In humans, mutation of MITF results in Waardenburg Syndrome IIa, a condition characterized by white forelock and deafness [125]. A role for MITF in pigment gene regulation has been suggested [126129], based on the existence of highly conserved MITF consensus DNA binding elements in the promoters of major pigment enzyme genes: tyrosinase, Tyrp1, Dct, and pmel17 (all involved in the functional differentiation of melanocytes) [130]. Transfection of MITF into cell lines has indicated a regulatory activity of the transfected MITF construct on the regulation of the pigmentation pathways [131]. Increasing evidence also suggests a role for MITF in the commitment, proliferation, and survival of melanocytes before and/or during neural crest cell migration [132]. These studies suggest that MITF, in addition to its involvement into the differentiation pathways such as pigmentation, may play an important role in the proliferation and/or survival of developing melanocytes, contributing to melanocyte differentiation by triggering cell cycle exit.

The differentiation functions of MITF are displayed when the expression levels of this protein are high. Indeed, high MITF levels have been demonstrated to exert an anti-proliferative activity in melanoma cells [133]. In this regard, low levels of MITF protein were found in invasive melanoma cells [134] and have been associated with poor prognosis and clinical disease progression [131, 135, 136]. In a multivariate analysis, the expression of MITF in intermediate-thickness cutaneous melanoma was inversely correlated with overall survival [135]. The authors speculated that MITF might be a new prognostic marker in intermediate-thickness malignant melanoma. The retention of MITF expression in the vast majority of human primary melanomas, including non-pigmented tumors, is consistent with this hypothesis and has also led to the widespread use of MITF as a diagnostic tool in this malignancy [135, 137139]. The MITF gene has been found to be amplified in 15% to 20% of metastatic melanomas [140142]. In melanomas, MITF targets a number of genes with antagonistic behaviors, including genes such as CDK2 and Bcl-2, which promote cell cycle progression and survival, as well as p21CIP1 and p16INK4A, which halt the cell cycle [43, 143145]. Furthermore, MITF resides downstream of two key anti-apoptotic pathways, the ERK and the PI3-kinase pathways, suggesting that MITF could integrate extracellular pro-survival signals [146]. Overall, the question of whether MITF may exert a pro-survival effect or growth inhibition in melanocytes and melanoma is still open and not yet fully understood. One could speculate that the cellular context and microenvironment may represent important influencing factors.

The expression and function of MITF can be regulated by a variety of cooperating transcription factors, such as Pax3, CREB, Sox10, Lef1, and Brn-2 [146, 147] as well as by members of the MAPK and cAMP pathways [148150]. In melanoma cells, activated BRAF suppresses MITF protein levels through ERK-mediated phosphorylation and degradation [133]. Furthermore, the MITF gene is amplified in 10-15% of melanomas carrying a mutated BRAF [141], supporting the view that continued expression of MITF is essential in melanoma cells. MITF was recently shown to also act downstream of the canonical WNT pathway, which includes cysteine-rich glycoproteins that play a critical role in development and oncogenesis [151]. In particular, the WNT gene family has been demonstrated to be involved into the development of the neural crest during melanocyte differentiation from pluripotent cells among several species (from zebrafish to mammalians) [151154]. Moreover, several WNT proteins have been shown to be overexpressed in various human cancers; among them, the up-regulation of the WNT2 seems to participate in inhibiting normal apoptotic machinery in melanoma cells [155] (recently, it has been suggested that the WNT2 protein expression levels can be also useful in the differential diagnosis of nevus versus melanoma [156]). A key downstream effector of this pathway is β-catenin. In the absence of WNT-signals, β-catenin is targeted for degradation through phosphorylation controlled by a complex consisting of glycogen synthase kinase-3-beta (GSK3β), axin, and adenomatous polyposis coli (APC) proteins. The WNT signals lead to the inactivation of GSK3β, thus stabilizing the intracellular levels of β-catenin and subsequently increasing transcription of downstream target genes. Mutations in multiple components of the WNT pathway have been identified in many human cancers, all of the mutations induce nuclear accumulation of β-catenin [151, 157]. In human melanoma, stabilizing mutations of β-catenin have been found in a significant fraction of established cell lines. Almost one third of these cell lines display aberrant nuclear accumulation of β-catenin, although few mutations have been classified as pathogeneic variants [157, 158]. These observations are consistent with the hypothesis that this pathway contributes to behavior of melanoma cells and might be inappropriately deregulated for the development of the disease.

In Figure 1, the main effectors of all the above-mentioned pathways with their functional relationships are schematically reported.
Figure 1

Major pathways involved in melanoma. Pathway associated with N-RAS, BRAF, and mitogen-activated protein kinase (MAPK) as well as with CDKN2A and MITF are schematically represented. Arrows, activating signals; interrupted lines, inhibiting signals. BAD, BCL-2 antagonist of cell death; cAMP, cyclic AMP; CDK4, Cyclin-dependent kinase 4; CDKN2A, Cyclin-dependent kinase inhibitor of kinase 2A; ERK1/2, Extracellular-related kinase 1 or 2; IkB, inhibitor of kB protein; IKK, inhibitor-of-kB-protein kinase; MC1R, melanocortin-1-receptor; MITF, Microphthalmia-Associated Transcription Factor; MEK1/2, Mitogen-activated protein kinase-extracellular related kinase 1/2; PI3K, Phosphatidylinositol 3 kinase; PIP2, Phosphatidylinositol bisphosphate; PIP3, Phosphatidylinositol trisphosphate; PTEN, Phosphatase and tensin homologue.

Novel signaling pathways in melanoma

Notch1

Notch proteins are a family of a single-pass type I transmembrane receptor of 300 kDa that was first identified in Drosophila melanogaster (at this level, a mutated protein causes 'notches' in the fly wing [159]). In vertebrates, there are four Notch genes encoding four different receptors (Notch1-4) that differ by the number of epidermal growth factor-like (EGF-like) repeats in the extracellular domain, as well as by the length of the intracellular domain [160162]. These receptors are activated by specific transmembrane ligands which are expressed on an adjacent cell and activate Notch signaling through a direct cell-cell interaction (Figure 2). When a cell expressing a Notch receptor is stimulated by the adjacent cell via a Notch ligand on the cell surface, the extracellular subunit is trans-endocytosed in the ligand-expressing cell. The remaining receptor transmembrane subunit undergoes two consecutive enzymatic cleavages. The first activating cleavage is mediated by a metalloprotease-dependent TNF-α Converting Enzyme (TACE) [163, 164]. This step is rapidly followed by a second cleavage in the transmembrane domain to generate an intracellular truncated version of the receptor designated as NICD. Thus, the rate of cleavage of Notch-1 is finely modulated by multiple post-translational modifications and cellular compartmentalization events. The intracellular domain of the Notch-1 receptor (NICD) can be then moved to the nucleus, where it forms a multimeric complex with a highly conserved transcription factor (CBF1, a repressor in the absence of Notch-1), and other transcriptional co-activators that influence the intensity and duration of Notch signals (Figure 2) [165, 166]. The final result is the activation of transcription at the level of promoters containing CBF-1-responsive elements, thus stimulating or repressing the expression of various target genes [167].
Figure 2

Notch1 pathway. The diagram shows the mechanism of activation of the Notch receptor by a cell-cell interaction through specific trasmembrane ligands, followed by the translation of the intracellular domain of the Notch-1 receptor (NICD) and formation of a transcription-activating multimeric complex. CSL, citrate synthase like; HAT, histone acetyltransferase; MAML, mastermind-like protein; SKIP, Skeletal muscle and kidney-enriched inositol phosphatase.

The Notch signaling pathway plays a pivotal role in tissue homeostasis and regulation of cell fate, such as self-renewal of adult stem cells, as well as in the differentiation of precursors along a specific cell lineage [168170]. Increasing evidence suggests its involvement in tumorigenesis, since deregulated Notch signaling is frequently observed in a variety of human cancers, such as T-cell acute lymphoblastic leukemias [171], small cell lung cancer [172], neuroblastoma [173, 174], cervical [175, 176] and prostate carcinomas [177]. Notch can act as either an oncogene or a tumor suppressor depending on both cellular and tissue contexts. Many studies suggest a role for Notch1 in keratinocytes as a tumor suppressor [178]. In such cells, Notch signaling induces cell growth arrest and differentiation (deletion of Notch1 in murine epidermis causes epidermal hyperplasia and skin carcinoma) [179, 180]. The anti-tumor effect of Notch1 in murine skin appears to be mediated by p21Waf1/Cipinduction and repression of WNT signaling [151, 178].

Unlike keratinocyte-derived squamous cell and basal cell carcinomas, melanomas have a significantly higher Notch activity in comparison with normal melanocytes [181, 182]. Investigation of the expression of Notch receptors and their ligands in benign and malignant cutaneous melanocytic lesions indicate that Notch1 and Notch2, as well as their ligands are significantly upregulated in atypical nevi and melanomas, compared to common melanocytic nevi [181, 182]. Furthermore, a constitutively-induced gene activation in human melanocytes strongly suggests that Notch1 acts as a transforming oncogene in such a cell lineage [183]. The versatile effects of Notch1 signaling on cell differentiation, proliferation, survival, and tumorigenesis may easily explain why Notch1 plays different roles in various types of skin cancers. Such different activities of Notch1 in skin cancer are probably determined by its interaction with the downstream β-catenin target. In murine skin carcinoma, β-catenin is functional activated by Notch1 signaling and mediates tumor-suppressive effects [178, 184]. In melanoma, β-catenin mediates oncogenic activity by also cross-talking with the WNT pathway or by regulating N-cadherin, with different effects on tumorigenesis depending on Notch1 activation [185].

Recent evidence suggest that Notch1 enhances vertical growth phase by the activation of the MAPK and AKT pathways; inhibition of either the MAPK or PI3K-AKT pathway reverses the tumor cell growth induced by Notch1 signaling. Future studies aimed at identifying new targets of Notch1 signaling will allow the assessment of the mechanisms underlying the crosstalk between Notch1, MAPK, and PI3K-AKT pathways. Finally, Notch signaling can enhance the cell survival by interacting with transcriptional factor NF-kB (NIC seems to directly interact with NF-kB, leading to retention of NF-kB in the nucleus of T cells) [186]. Nevertheless, it has been shown that NIC can directly regulate IFN-γ expression through the formation of complexes between NF-kB and the IFN-γ promoter. Although there is a lack of consensus about crosstalk between Notch1 and NF-kB, existing data suggest that two mechanisms of NF-kB activation may occur: an early Notch-independent phase and a late Notch-dependent activation of NF-kB [187]. Finally, RAS-mediated transformation requires the presence of intact Notch signaling; impairment of such Notch1 receptor signaling may significantly reduce the ability of RAS to transform cells [188, 189].

In conclusion, although the precise details of the mechanisms by which Notch1 signaling can contribute to melanoma development remain to be defined, Notch1 could be clearly considered as a novel candidate gene implicated in melanomagenesis.

iNOS

Human melanoma tumors cells are known to express the inducible nitric oxide synthase (iNOS) enzyme, which is responsible for cytokine induced nitric oxide (NO) production during immune responses (Figure 3). The constitutive expression of iNOS in many cancer cells along with its strong association with poor patient survival seems to indicate that iNOS is a molecular marker of poor prognosis or a putative target for therapy [190]. Nitric oxide is a free radical that is largely synthesized by the NO synthase (NOS) enzyme, which exists in three established isoforms: endothelial NOS (eNOS, NOS III) and neuronal NOS (nNOS, NOS I), which are both constitutively expressed and inducible NOS (iNOS, NOS II) which is regulated at the transcriptional level by a variety of mediators (such as interferon regulatory factor-1 [191, 192], NF-kB [193, 194], TNF-α and INF-γ [195, 196] and has been found to be frequently expressed in melanoma [197200]. The iNOS gene is located at chromosome 17q11.2 and encodes a 131 kDa protein.
Figure 3

iNOS pathway. The functional correlation between the IRF1-activating events (mainly, through an induction regulated by NF-kB, TNF-α, and INF-γ mediators) and expression levels of iNOS is shown. CALM, calmodulin; IkB, inhibitor of kB protein; IKK, inhibitor-of-kB-protein kinase; IRF1, interferon regulatory factor-1; LPS, lipopolysaccharide; NO, nitric oxide; STAT1, signal transducer and activator of transcription 1.

In normal melanocytes, the pigment molecule eumelanin provides a redox function supporting an antioxidant intracellular environment. In melanoma cells, a pro-oxidant status has been however reported [195]. Both reactive oxygen species (ROS) and reactive nitrogen oxidants (RNS) can be identified in melanoma. It has been hypothesized that NO may have a different effect on tumors on the basis of its intracellular concentrations. High concentrations of NO might mediate apoptosis and inhibition of growth in cancer cells; conversely, low concentrations of NO may promote tumor growth and angiogenesis [196]. Although the exact function of iNOS in tumorigenesis remains unclear, the overproduction of NO may affect the development or progression of melanoma. It has been shown that the transfection of iNOS gene into murine melanoma cells induces apoptosis, suppresses tumorigenicity, and abrogates metastasis [201, 202]. More generally, NO induces apoptosis by altering the expression and function of multiple apoptosis-related proteins (i.e. downregulation of Bcl-2, accumulation of p53, cleavage of PARP [203209]). The role of iNOS in melanoma progression remains controversial. Higher levels of iNOS have been found in subcutaneous and lymph node metastases of nonprogressive melanoma as compared to metastases of progressive melanoma [210], however, iNOS was found to be expressed to a lesser extent in metastases as compared with nevi and primary melanomas [211]. Nevertheless, the expression of iNOS in lymph nodes and in-transit metastases has been proposed as an indicator of poor prognosis [212].

Finally, nNOS may also play a role in regulating the NO level in cells of melanocytic lineage. The nNOS protein is expressed in the vast majority of melanocytes and cultured melanoma cells, but not in normal melanocytes. However, approximately 49% of benign nevi, 72% of atypical nevi, and 82% of primary malignant melanomas have been reported to express nNOS [213]. The lack of expression of nNOS in normal melanocytes suggests that de novo enhanced expression of nNOS may be a marker for an early stage of pigment cell tumor formation, since this variation may lead to an increased level of NO that causes tissue resistance to apoptosis [214].

Conclusion

Considering the complexity of the above described pathways, probably no individual genetic or molecular alteration is per se crucial; rather the interaction of some or most of such changes are involved in the generation of a specific set of biological outcomes. For melanomagenesis, it is possible to infer that the following alterations are needed:
  1. 1.

    induction of clonal expansion, which is paramount to the generation of a limited cell population for further clonal selection (mutational activation of BRAF or NRAS or amplification of CCND1 or CDK4 may provide this initiating step);

     
  2. 2.

    modifications to overcome mechanisms controlling the melanocyte senescence, which otherwise would halt the lesion as a benign mole. In melanoma cells both in vitro and in vivo, a change seems to be dramatically required: inactivation of the p16CDKN2A-RB pathway (as discussed above, at least 80-90% of uncultured melanomas do show primary inactivation of such a pathway);

     
  3. 3.

    suppression of the apoptosis. Many of the previously described primary changes suppress the machinery regulating apoptosis allowing for the progression to the vertical growth phase stage (i.e., expression of the AKT antiapoptotic protein was reported to induce the conversion of the radial growth in vertical growth in melanoma).

     

Despite our attempt to organize the various key molecular alterations involved in melanomagenesis, there may be a relatively large number of alternative primary events, each relatively uncommon on its own, that result in a common secondary outcome, such as upregulation of NFκB and/or variation of the MITF expression levels. The awareness of the existence of such an intracellular web of molecular changes raises a critical question: can some primary alteration in melanoma become suitable as target for therapeutic approaches?

This scenario is further complicated by the fact that the majority of melanomas do not seem to evolve from nevi and only about half of them are associated with dysplastic nevi [215], strongly suggesting that melanoma may mostly arise from normal-appearing skin without following the classical sequential accumulation of molecular events during tumorigenesis. Recently, it has been suggested that melanomas may be derived from transformed melanocyte stem cells, melanocyte progenitors, or de-differentiated mature melanocytes [216, 217]. Although the origin of intradermic stem-cells has yet to be determined, it has been postulated that the interaction with the tumor microenvironment (including surrounding and/or recruited fibroblasts and endothelial and inflammatory cells) may induce such cells to transform directly into the various cell variants (normal melanocytes, benign or intermediate proliferating melanocytic cells, malign or metastatic melanoma cells), without progressing through intermediates [217]. In the very near future, the biologic and molecular characterization of melanoma stem cells will also clarify as to whether the well-known drug resistance of melanoma resides in the existence of quiescent or drug-resistant cancer stem cells as well as whether the inhibition of self-renewing cancer stem cells prevents melanoma regrowth.

What we can surely affirm is that targeting a single component in such complex signaling pathways is unlikely to yield a significant anti-tumor response in melanoma patients. For this reason, further evaluation of all known molecular targets along with the molecular classification of primary melanomas could become very helpful in predicting the subsets of patients who would be expected to be more or less likely to respond to specific therapeutic interventions. Now is the time for successfully translating all such research knowledge into clinical practice.

Declarations

Acknowledgements

The author wishes to thank Alessandra Trocino, for providing excellent bibliography service and assistance, and Ilenia Visconti, for data management.

Authors’ Affiliations

(1)
Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR)
(2)
Istituto Nazionale Tumori "Fondazione Pascale"
(3)
Department of Transfusion Medicine Clinical Center, NIH, Cell Processing Section

References

  1. Miller AJ, Mihm MC: Melanoma. N Engl J Med. 2006, 355: 51-65.PubMedGoogle Scholar
  2. Wolchok JD, Saenger YM: Current topics in melanoma. Curr Opin Oncol. 2007, 19: 116-20.PubMedGoogle Scholar
  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho J, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature. 2002, 417: 949-54.PubMedGoogle Scholar
  4. The Melanoma Molecular Map Project at. [http://www.mmmp.org/MMMP]
  5. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, Cho KH, Aiba S, Brocker EB, LeBoit PE, Pinkel D, Bastian BC: Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005, 353: 2135-47.PubMedGoogle Scholar
  6. Mooi WJ, Peeper DS: Oncogene-induced cell senescence--halting on the road to cancer. New Engl J Med. 2006, 355: 1037-46.PubMedGoogle Scholar
  7. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C, Schurra C, Garre' M, Nuciforo PG, Bensimon A, Maestro R, Pelicci PG, d'Adda di Fagagna F: Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006, 444: 638-642.PubMedGoogle Scholar
  8. Hong SK, Pusapati RV, Powers JT, Johnson DG: Oncogenes and the DNA damage response - Myc and E2F1 engage the ATM signaling pathway to activate p53 and induce apoptosis. Cell Cycle. 2006, 5: 801-803.PubMedGoogle Scholar
  9. Di Micco R, Cicalese A, Fumagalli M, Dobreva M, Verrecchia A, Pelicci PG, di Fagagna F: DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle. 2008, 7: 3601-3606.PubMedGoogle Scholar
  10. Bennett DC: Familial melanoma genes, melanocyte immortalization and melanoma initiation. Melanocytes to Melanoma: The Progression to Malignancy. Edited by: Hearing VJ, Leong SPL. 2006, New Jersey: Humana Press, 183-96.Google Scholar
  11. Thompson JF, Scolyer RA, Kefford RF: Cutaneous melanoma. The Lancet. 2005, 365: 687-701.Google Scholar
  12. Haluska FG, Tsao H, Wu H, Haluska FS, Lazar A, Goel V: Genetic alterations in signaling pathways in melanoma. Clin Cancer Res. 2006, 12: 2301s-7s.PubMedGoogle Scholar
  13. Pomerantz J, Schreiber-Agus N, Liégeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA: The Ink4a tumor suppressor gene product, 19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell. 1998, 92: 713-23.PubMedGoogle Scholar
  14. Soengas MS, Lowe SW: Apoptosis and melanoma chemoresistance. Oncogene. 2003, 22: 3138-51.PubMedGoogle Scholar
  15. Bowen AR, Hanks AN, Allen SM, Alexander A, Diedrich MJ, Grossman D: Apoptosis regulators and responses in human melanocytic and keratinocytic cells. J Invest Dermatol. 2003, 120: 48-55.PubMedGoogle Scholar
  16. Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, Melchi CF: Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005, 41: 45-60.PubMedGoogle Scholar
  17. Gilchrest BA, Eller MS, Geller AC, Yaar M: The pathogenesis of melanoma induced by ultraviolet radiation. New Engl J Med. 1999, 340: 1341-8.PubMedGoogle Scholar
  18. Jhappan C, Noonan FP, Merlino G: Ultraviolet radiation and cutaneous malignant melanoma. Oncogene. 2003, 22: 3099-112.PubMedGoogle Scholar
  19. Eide MJ, Weinstock MA: Association of UV index, latitude, and melanoma incidence in non-White populations--US surveillance, epidemiology, and end results (SEER) program, 1992 to 2001. Arch Dermatol. 2005, 141: 477-481.PubMedGoogle Scholar
  20. De Fabo EC, Noonan FP, Fears T, Merlino G: Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 2004, 64: 6372-6.PubMedGoogle Scholar
  21. Wang SQ, Setlow R, Berwick M, Polsky D, Marghoob AA, Kopf AW, Bart RS: Ultraviolet A and melanoma: a review. J Am Acad Dermatol. 2001, 44: 837-46.PubMedGoogle Scholar
  22. Moan J, Dahlback A, Setlow RB: Epidemiological support for an hypothesis for melanoma induction indicating a role for UVA radiation. Photochem Photobiol. 1999, 70: 243-247.PubMedGoogle Scholar
  23. Oliveria S, Dusza S, Berwick M: Issues in the epidemiology of melanoma. Expert Rev Anticancer Ther. 2001, 1: 453-9.PubMedGoogle Scholar
  24. Garland C, Garland F, Gorham E: Epidemiologic evidence for different roles of ultraviolet A and B radiation in melanoma mortality rates. Ann Epidemiol. 2003, 13: 395-404.PubMedGoogle Scholar
  25. Takata M, Saida T: Genetic alteration in melanocytic tumors. J Dermat Science. 2006, 43: 1-10.Google Scholar
  26. Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, Willemze R, Bavinck JN: Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol. 2001, 117: 294-300.PubMedGoogle Scholar
  27. Beaumont KA, Shekar SN, Newton RA, James MR, Stow JL, Duffy DL, Sturm RA: Receptor function, dominant negative activity and phenotype correlations for MC1R variant alleles. Hum Mol Genet. 2007, 16: 2249-2260.PubMedGoogle Scholar
  28. Kanetsky PA, Rebbeck TR, Hummer AJ, Panossian S, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Culver HA, Zanetti R, Gallagher RP, Dwyer T, Busam K, From L, Mujumdar U, Wilcox H, Begg CB, Berwick M: Population-based study of natural variation in the melanocortin-1 receptor gene and melanoma. Cancer Res. 2006, 66: 9330-9337.PubMedGoogle Scholar
  29. Raimondi S, Sera F, Gandini S, Iodice S, Caini S, Maisonneuve P, Fargnoli MC: MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer. 2008, 122: 2753-2760.PubMedGoogle Scholar
  30. Box NF, Duffy DL, Irving RE, Russell A, Chen W, Griffyths LR, Parsons PG, Green AC, Sturm RA: Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol. 2001, 116: 224-229.PubMedGoogle Scholar
  31. Giehl K: Oncogenic Ras in tumor progression and metastasis. Biol Chem. 2005, 386 (3): 193-205.PubMedGoogle Scholar
  32. Campbell PM, Der CJ: Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin Cancer Biol. 2004, 14 (2): 105-14.PubMedGoogle Scholar
  33. Pritchard CA, Samuels ML, Bosch E, McMahon M: Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol. 1995, 15: 6430-42.PubMed CentralPubMedGoogle Scholar
  34. Beeram M, Patnaik A, Rowinsky EK: Raf: a strategic target for therapeutic development against cancer. J Clin Oncol. 2005, 23 (27): 6771-90.PubMedGoogle Scholar
  35. Emuss V, Garnett M, Mason C, Marais R: Mutations of C-RAF are rare in human cancer because C-RAF has a low basal kinase activity compared with B-RAF. Cancer Res. 2005, 65: 9719-26.PubMedGoogle Scholar
  36. Zebisch A, Staber PB, Delavar A, Bodner C, Hiden K, Fischereder K, Janakiraman M, Linkesch W, Auner HW, Emberger W, Windpassinger C, Schimek MG, Hoefler G, Troppmair J, Sill H: Two transforming C-RAF germ-line mutations identified in patients with therapy-related acute myeloid leukemia. Cancer Res. 2006, 66: 3401-8.PubMedGoogle Scholar
  37. Lee JW, Soung YH, Kim SY, Park WS, Nam SW, Min WS, Kim SH, Lee JY, Yoo NJ, Lee SH: Mutational analysis of the ARAF gene in human cancers. APMIS. 2005, 113: 54-7.PubMedGoogle Scholar
  38. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA: High prevalence of BRAF mutations in papillary thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signalling pathway in papillary carcinoma. Cancer Res. 2003, 63 (7): 1454-7.PubMedGoogle Scholar
  39. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR, Weber BL: BRAF and Ras mutations in human lung cancer and melanoma. Cancer Res. 2002, 62 (23): 6997-7000.PubMedGoogle Scholar
  40. Tannapfel A, Sommerer F, Benicke M, Katalinic A, Uhlmann D, Witzigmann H, Hauss J, Wittekind C: Mutation of the BRAF gene in cholangiocarcinoma but not in hepatocellular carcinoma. Gut. 2003, 52 (5): 706-12.PubMed CentralPubMedGoogle Scholar
  41. Palmieri G, Casula M, Sini MC, Ascierto PA, Cossu A: Issues affecting molecular staging in the management of patients with melanoma. J Cell Mol Med. 2007, 11: 1052-1068.PubMed CentralPubMedGoogle Scholar
  42. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R: Cancer Genome Project. Mechanism of activation of tha Ras-Erk signaling pathaway by oncogenic mutation on BRAF. Cell. 2004, 116: 855-867.PubMedGoogle Scholar
  43. Carreira S, Goodall J, Aksan I, La Rocca SA, Galibert MD, Denat L, Larue L, Goding CR: Mitf cooperates with Rb1 and activates p21Cip1 expression to regulate cell cycle progression. Nature. 2005, 433: 764-9.PubMedGoogle Scholar
  44. Casula M, Colombino M, Satta MP, Cossu A, Ascierto PA, Bianchi-Scarrà G, Castiglia D, Budroni M, Rozzo C, Manca A, Lissia A, Carboni A, Petretto E, Satriano SM, Botti G, Mantelli M, Ghiorzo P, Stratton MR, Tanda F, Palmieri G, Italian Melanoma Intergroup Study: Braf gene is somatically mutated but does not make a major contribution to malignant melanoma susceptibility: the Italian Melanoma Intergroup study. J Clin Oncol. 2004, 22: 286-92.PubMedGoogle Scholar
  45. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS: High frequency of BRAF mutations in nevi. Nat Genet. 2003, 33 (1): 19-20.PubMedGoogle Scholar
  46. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z, Aaronson SA: BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res. 2003, 63 (14): 3883-5.PubMedGoogle Scholar
  47. Greene VR, Johnson MM, Grimm EA, Ellerhorst JA: Frequencies of NRAS and BRAF mutations increase from the radial to the vertical growth phase in cutaneous melanoma. J Invest Dermatol. 2009, 129: 1483-1488.PubMed CentralPubMedGoogle Scholar
  48. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI: BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005, 15: 249-54.PubMedGoogle Scholar
  49. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, Horst van der CM, Majoor DM, Shay JW, Mooi WJ, Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005, 436: 720-724.PubMedGoogle Scholar
  50. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008, 132: 363-374.PubMed CentralPubMedGoogle Scholar
  51. Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS: BRAF(E600) in benign and malignant human tumours. Oncogene. 2008, 27: 877-895.PubMedGoogle Scholar
  52. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V, Larue L, Pritchard C, Marais R: Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell. 2009, 15: 294-303.PubMedGoogle Scholar
  53. Landi MT, Bauer J, Pfeiffer RM, Elder DE, Hulley B, Minghetti P, Calista D, Kanetsky PA, Pinkel D, Bastian BC: MC1R germline variants confer risk for BRAF-mutant melanoma. Science. 2006, 313: 521-2.PubMedGoogle Scholar
  54. Sensi M, Nicolini G, Petti C, Bersani I, Lozupone F, Molla A, Vegetti C, Nonaka D, Mortarini R, Parmiani G, Fais S, Anichini A: Mutually exclusive N-RasQ61R and BRAF V600E mutations at the single-cell level in the same human melanoma. Oncogene. 2006, 25: 3357-64.PubMedGoogle Scholar
  55. Jiveskog S, Ragnarsson-Olding B, Platz A, Ringborg U: N-RAS mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J Invest Dermatol. 1998, 111: 757-761.PubMedGoogle Scholar
  56. El Shabrawi Y, Radner H, Muellner K, Langmann G, Hoefler G: The role of UV-radiation in the development of conjunctival malignant melanoma. Acta Ophthalmol Scand. 1999, 77: 31-32.PubMedGoogle Scholar
  57. Ashida A, Takata M, Murata H, Kido K, Saida T: Pathological activation of KIT in metastatic tumors of acral and mucosal melanomas. Int J Cancer. 2009, 124: 862-868.PubMedGoogle Scholar
  58. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J, Town A, Harlow A, Cruz F, Azar S, Rubin BP, Muller S, West R, Heinrich MC, Corless CL: KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res. 2008, 14: 6821-6828.PubMedGoogle Scholar
  59. Stone S, Ping J, Dayananth P, Tavtigian SV, Katcher H, Parry D, Gordon P, Kamb A: Complex Structure and Regulation of the P16 (MTS1) Locus. Cancer Research. 1995, 55: 2988-2994.PubMedGoogle Scholar
  60. Pho L, Grossman D, Laechman SA: Melanoma genetics: a review of genetic factors and clinical phenotypes in familial melanoma. Current Opinion in Oncology. 2006, 18: 173-9.PubMedGoogle Scholar
  61. Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995, 83: 993-1000.PubMedGoogle Scholar
  62. Pacifico A, Leone G: Role of p53 and CKN2A inactivation in human squamous cell carcinomas. J Biomed Biotechnol. 2007, 2007 (3): 43418-PubMed CentralPubMedGoogle Scholar
  63. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM: MDM2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J Biol Chem. 2000, 275 (12): 8945-51.PubMedGoogle Scholar
  64. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G: The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. Embo J. 1998, 17: 5001-5014.PubMed CentralPubMedGoogle Scholar
  65. Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG: Low Prevalence of Germline CDKN2A and CDK4 Mutations in Patients With Early-Onset Melanoma. Arch Dermatol. 2000, 136: 1118-1122.PubMedGoogle Scholar
  66. Piepkorn M: Melanoma genetics: An update with focus on the CDKN2A(p16)/ARF tumor suppressors. J Am Acad Dermatol. 2000, 42: 705-722.PubMedGoogle Scholar
  67. Levine AJ: p53, the cellular gatekeeper for growth and division. Cell. 1997, 88: 323-331.PubMedGoogle Scholar
  68. Box NF, Terzian T: The role of p53 in pigmentation, tanning and melanoma. Pigment Cell Melanoma Res. 2008, 21: 525-533.PubMedGoogle Scholar
  69. Goldstein AM, Landi MT, Tsang S, Fraser MC, Munroe DJ, Tucker MA: Association of MC1R Variants and Risk of Melanoma in Melanoma-Prone Families with CDKN2A Mutations. Cancer Epidemiol Biomarkers Prev. 2005, 14 (9):
  70. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, Chompret A, Ghiorzo P, Gruis N, Hansson J, Harland M, Hayward N, Holland EA, Mann GJ, Mantelli M, Nancarrow D, Platz A, Tucker MA, Melanoma Genetics Consortium: Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst. 2002, 94 (12): 894-903.PubMedGoogle Scholar
  71. Chaudru V, Chompret A, Bressac-de Paillerets B, Spatz A, Avri MF, Demenais F: Influence of genes, nevi, and sun sensitivity on melanoma risk in a family sample unselected by family history and in melanoma-prone families. Journal of the National Cancer Institute. 2004, 96: 785-95.PubMedGoogle Scholar
  72. Puig S, Malvehy J, Badenas C, Ruiz A, Jimenez D, Cuellar F, Azon A, Gonzàlez U, Castel T, Campoy A, Herrero J, Martí R, Brunet-Vidal J, Milà M: Role of the CDKN2A Locus in patients with multiple primary melanomas. J Clin Oncol. 2005, 23: 3043-3051.PubMedGoogle Scholar
  73. Eliason MJ, Hansen CB, Hart M, Porter-Gill P, Chen W, Sturm RA, Bowen G, Florell SR, Harris RM, Cannon-Albright LA, Swinyer L, Leachman SA: Multiple primary melanomas in a CDKN2A mutation carrier exposed to ionizing radiation. Arch Dermatol. 2007, 143 (11): 1409-12.PubMedGoogle Scholar
  74. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997, 275: 1943-1947.PubMedGoogle Scholar
  75. Tamura M, Gu J, Matsumoto K, Aota S, Parsons R, Yamada KM: Inhibition of cell migration, spreading, and focal adhesions by tumour suppressor PTEN. Science. 1998, 280: 1614-1617.PubMedGoogle Scholar
  76. Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP: Impaired Fas response and autoimmunity in PTEN +/- mice. Science. 1999, 285: 2122-2125.PubMedGoogle Scholar
  77. Li J, Simpson L, Takahashi M, Miliaresis C, Myers MP, Tonks N, Parsons R: The PTEN/MMAC1 tumour suppressor induces cell death that is rescued by the AKT/protein kinase B oncogene. Cancer Res. 1998, 58: 5667-5672.PubMedGoogle Scholar
  78. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Rulnd J, Penninger JM, Siderovski DP, Mak TW: Negative regulation of PKB/Akt-dependent cell survival by the tumour suppressor PTEN. Cell. 1998, 95: 29-39.PubMedGoogle Scholar
  79. Datta SR, Brunet A, Greenberg ME: Cellular survival: A play in three Akts. Genes Dev. 1999, 13: 2905-2927.PubMedGoogle Scholar
  80. Brazil DP, Park J, Hemmings BA: PKB binding proteins: getting in on the Akt. Cell. 2002, 111: 293-303.PubMedGoogle Scholar
  81. Nicholson KM, Anderson NG: The protein kinase B/Akt signalling pathway in human malignancy. Cell Signalling. 2002, 14: 381-95.PubMedGoogle Scholar
  82. Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N: Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 2001, 15: 2203-8.PubMed CentralPubMedGoogle Scholar
  83. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ: Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB). Science. 2001, 292: 1728-31.PubMedGoogle Scholar
  84. Satyamoorthy K, Li G, Vaidya B, Patel D, Herlyn M: Insulin-like growth factor-1 induces survival and growth of biologically early melanoma cells through both the mitogen-activated protein kinase and beta-catenin pathways. Cancer Res. 2001, 61: 7318-24.PubMedGoogle Scholar
  85. Dhawan P, Singh AB, Ellis DL, Richmond A: Constitutive Activation Akt/Protein kinase B in Melanoma Leads to Up-Regulation of Nuclear factor-kB and Tumor Progression. Cancer Res. 2002, 62: 7335-7342.PubMedGoogle Scholar
  86. Stokoe D: Pten. Curr Biol. 2001, 11 (13): R502-PubMedGoogle Scholar
  87. Dahia PL: PTEN, a unique tumor suppressor gene. Endocr Relat Cancer. 2000, 7: 115-129.PubMedGoogle Scholar
  88. Kandel ES, Hay N: The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp Cell Res. 1999, 253: 210-229.PubMedGoogle Scholar
  89. Downward J: PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004, 15: 177-182.PubMedGoogle Scholar
  90. Vivanco I, Sawyers CL: The phosphatidylinositol 3-kinase AKT pathwayin human cancer. Nat Rev Cancer. 2002, 2: 489-501.PubMedGoogle Scholar
  91. Staal SP: Molecular cloning of the Akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natal Acad Sci. 1987, 84: 5034-7.Google Scholar
  92. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA, Wan M, Dubeau L, Scambia G, Masciullo V, Ferrandina G, Benedetti Panici P, Mancuso S, Neri G, Testa JR: Molecular alterations of the Akt2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995, 64: 280-5.PubMedGoogle Scholar
  93. Stahl JM, Sharma A, Cheung M, Zimmerman M, Cheng JQ, Bosenberg MW, Kester M, Sandirasegarane L, Robertson GP: Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004, 64: 7002-10.PubMedGoogle Scholar
  94. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, Yan H, Gazdar A, Powell SM, Riggins GJ, Willson JK, Markowitz S, Kinzler KW, Vogelstein B, Velculescu VE: High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004, 304 (5670): 554-PubMedGoogle Scholar
  95. Samuels Y, Diaz LA, Schmidt-Kittler O, Cummins JM, Delong L, Cheong I, Rago C, Huso DL, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell. 2005, 7: 561-73.PubMedGoogle Scholar
  96. Omholt K, Krockel D, Ringborg U, Hansson J: Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res. 2006, 16: 197-200.PubMedGoogle Scholar
  97. Curtin JA, Stark MS, Pinkel D, Hayward NK, Bastian BC: PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol. 2006, 126: 1660-3.PubMedGoogle Scholar
  98. Blume-Jensen P, Hunter T: Oncogenic kinase signalling. Nature. 2001, 411: 355-365.PubMedGoogle Scholar
  99. Plas DR, Thompson CB: Akt-dependent transformation: there is more to growth than just surviving. Oncogene. 2005, 24: 7435-7442.PubMedGoogle Scholar
  100. Stiles B, Groszer M, Wang S, Jiao J, Wu H: PTENless means more. Dev Biol. 2004, 273: 175-184.PubMedGoogle Scholar
  101. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME: Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997, 91: 231-241.PubMedGoogle Scholar
  102. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC: Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998, 282: 1318-1321.PubMedGoogle Scholar
  103. Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci. 2001, 98: 11598-11603.PubMed CentralPubMedGoogle Scholar
  104. Gottlieb TM, Leal JF, Seger R, Taya Y, Oren M: Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene. 2002, 21: 1299-1303.PubMedGoogle Scholar
  105. Oren M, Damalas A, Gottlieb T, Michael D, Taplick J, Leal JF, Maya R, Moas M, Seger R, Taya Y, Ben-Ze'ev A: Regulation of p53: intricate loops and delicate balances. Biochem Pharmacol. 2002, 64: 865-871.PubMedGoogle Scholar
  106. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999, 96: 857-868.PubMedGoogle Scholar
  107. Romashkova JA, Makarov SS: NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature. 1999, 401: 86-90.PubMedGoogle Scholar
  108. Wan YS, Wang ZQ, Shao Y, Voorhees JJ, Fisher GJ: Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int J Oncol. 2001, 18: 461-6.PubMedGoogle Scholar
  109. Waldmann V, Wacker J, Deichmann M: Mutations of the activation-associated phosphorylation sites at codons 308 and 473 of protein kinase B are absent in human melanoma. Arch Dermatol Res. 2001, 293: 368-72.PubMedGoogle Scholar
  110. Waldmann V, Wacker J, Deichmann M: Absence of mutations in the pleckstrin homology (PH) domain of protein kinase B (PKB/Akt) in malignant melanoma. Melanoma Res. 2002, 12: 45-50.PubMedGoogle Scholar
  111. Davies MA, Stemke-Hale K, Tellez C, Calderone TL, Deng W, Prieto VG, Lazar AJ, Gershenwald JE, Mills GB: A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer. 2008, 99: 1265-1268.PubMed CentralPubMedGoogle Scholar
  112. Krasilnikov M, Adler V, Fuchs SY, Dong Z, Haimovitz-Friedman A, Herlyn M, Ronai Z: Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Mol Carcinog. 1999, 24: 64-9.PubMedGoogle Scholar
  113. Simpson L, Parsons R: PTEN: life as a tumor suppressor. Exp Cell Res. 2001, 264: 29-41.PubMedGoogle Scholar
  114. Maehama T, Dixon JE: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998, 273: 13375-13378.PubMedGoogle Scholar
  115. Vazquez F, Sellers WR: The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta. 2000, 1470 (1): M21-35.PubMedGoogle Scholar
  116. Bonneau D, Longy M: Mutations of the human PTEN gene. Hum Mutat. 2000, 16 (2): 109-22.PubMedGoogle Scholar
  117. Maehama T, Taylor GS, Dixon JE: PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem. 2001, 70: 247-279.PubMedGoogle Scholar
  118. Ali IU, Schriml LM, Dean M: Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Nat Cancer Inst. 1999, 91: 1922-1932.PubMedGoogle Scholar
  119. Tsao H, Zhang X, Benoit E, Haluska FG: Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene. 1998, 16 (26): 3397-402.PubMedGoogle Scholar
  120. Egger G, Liang G, Aparicio A, Jones PA: Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004, 429: 457-63.PubMedGoogle Scholar
  121. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, Sill H, Marsh DJ, Ritz J, Freedman A, Stiles C, Eng C: PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanisms in haematological malignancies. Hum Mol Genet. 1999, 8: 185-93.PubMedGoogle Scholar
  122. Salvesen HB, MacDonald N, Ryan A, Jacobs IJ, Lynch ED, Akslen LA, Das S: PTEN methylation is associated with advanced stage and microsatellite instability in endometrial carcinoma. Int J Cancer. 2001, 91 (1): 22-6.PubMedGoogle Scholar
  123. Fuse N, Yasumoto K, Takeda K, Amae S, Yoshizawa M, Udono T, Takahashi K, Tamai M, Tomita Y, Tachibana M, Shibahara S: Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus. J Biochem. 1999, 126: 1043-1051.PubMedGoogle Scholar
  124. Hodgkinson CA, Moore KJ, Nakayama A, Steingrímsson E, Copeland NG, Jenkins NA, Arnheiter H: Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 1993, 74: 395-404.PubMedGoogle Scholar
  125. Hughes AE, Newton VE, Liu XZ, Read AP: A gene for Waardenburg syndrome type 2 maps close to the human homologue of the microphthalmia gene at chromosome 3p12-p14.1. Nat Genet. 1994, 7: 509-512.PubMedGoogle Scholar
  126. Bentley NJ, Eisen T, Goding CR: Melanocyte-specific expression of the human tyrosinase promoter: activation by the microphthalmia gene product and role of the initiator. Mol Cell Biol. 1994, 14: 7996-8006.PubMed CentralPubMedGoogle Scholar
  127. Hemesath TJ, Steingrímsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA, Arnheiter H, Copeland NG, Jenkins NA, Fisher DE: Microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994, 8: 2770-2780.PubMedGoogle Scholar
  128. Yasumoto K, Yokoyama K, Shibata K, Tomita Y, Shibahara S: Micropthalmia-associated transcription factor as a regulator for melanocytespecific transcription of the human tyrosinase gene. Mol Cell Biol. 1994, 14: 8058-8070.PubMed CentralPubMedGoogle Scholar
  129. Yasumoto K, Yokoyama K, Takahashi K, Tomita Y, Shibahara S: Functional analysis of microphthalmia-associated transcription factor in pigment cell-specific transcription of the human tyrosinase family genes. J Biol Chem. 1997, 272: 503-509.PubMedGoogle Scholar
  130. Steingrímsson E, Copeland NG, Jenkins NA: Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet. 2004, 38: 365-411.PubMedGoogle Scholar
  131. Selzer E, Wacheck V, Lucas T, Heere-Ress E, Wu M, Weilbaecher KN, Schlegel W, Valent P, Wrba F, Pehamberger H, Fisher D, Jansen B: The melanocyte-specific isoform of the microphthalmia transcription factor affects the phenotype of human melanoma. Cancer Res. 2002, 62: 2098-2103.PubMedGoogle Scholar
  132. Opdecamp K, Nakayama A, Nguyen MT, Hodgkinson CA, Pavan WJ, Arnheiter H: Melanocyte development in vivo and in neural crest cell cultures: crucial dependence on the MITF basic-helix-loop-helix-zipper transcription factor. Development. 1997, 124: 2377-2386.PubMedGoogle Scholar
  133. Wellbrock C, Marais R: Elevated expression of MITF counteracts B-RAF stimulated melanocyte and melanoma cell proliferation. J Cell Biol. 2005, 170: 703-708.PubMed CentralPubMedGoogle Scholar
  134. Hoek KS, Eichhoff OM, Schlegel NC, Döbbeling U, Kobert N, Schaerer L, Hemmi S, Dummer R: In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008, 68: 650-656.PubMedGoogle Scholar
  135. Salti GI, Manougian T, Farolan M, Shilkaitis A, Majumdar D, Das Gupta TK: Microphthalmia transcription factor: a new prognostic marker in intermediate-thickness cutaneous malignant melanoma. Cancer Res. 2000, 60: 5012-5016.PubMedGoogle Scholar
  136. Zhuang L, Lee CS, Scolyer RA, McCarthy SW, Zhang XD, Thompson JF, Hersey P: Mcl-1, Bcl-XL and Stat3 expression are associated with progression of melanoma whereas Bcl-2, AP-2 and MITF levels decrease during progression of melanoma. Mod Pathol. 2007, 20: 416-426.PubMedGoogle Scholar
  137. King R, Googe PB, Weilbaecher KN, Mihm MC, Fisher DE: Microphthalmia transcription factor. A sensitive and specific melanocyte marker for melanoma diagnosis. Am J Path. 1999, 155: 731-738.PubMed CentralPubMedGoogle Scholar
  138. Miettinen M, Fernandez M, Franssila K, Gatalica Z, Lasota J, Sarlomo-Rikala M: Micropthamia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am J Surg Pathol. 2001, 25: 205-211.PubMedGoogle Scholar
  139. Chang KL, Folpe AL: Diagnostic utility of microphthalmia transcription factor in malignant melanoma and other tumors. Adv Anat Pathol. 2001, 8: 273-275.PubMedGoogle Scholar
  140. Levy C, Khaled M, Fisher DE: MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med. 2006, 12: 406-14.PubMedGoogle Scholar
  141. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S, Beroukhim R, Milner DA, Granter SR, Du J, Lee C, Wagner SN, Li C, Golub TR, Rimm DL, Meyerson ML, Fisher DE, Sellers WR: Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005, 436: 117-22.PubMedGoogle Scholar
  142. Garraway LA, Sellers WR: Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer. 2006, 6: 593-602.PubMedGoogle Scholar
  143. Loercher AE, Tank EM, Delston RB, Harbour JW: MITF links differentiation with cell cycle arrest in melanocytes by transcriptional activation of INK4A. J Cell Biol. 2005, 168: 35-40.PubMed CentralPubMedGoogle Scholar
  144. Du J, Widlund HR, Horstmann MA, Ramaswamy S, Ross K, Huber WE, Nishimura EK, Golub TR, Fisher DE: Critical role of CDK2 for melanoma growth linked to its melanocytespecific transcriptional regulation by MITF. Cancer Cell. 2004, 6: 565-76.PubMedGoogle Scholar
  145. McGill GG, Horstmann M, Widlund HR, Du J, Motyckova G, Nishimura EK, Lin YL, Ramaswamy S, Avery W, Ding HF, Jordan SA, Jackson IJ, Korsmeyer SJ, Golub TR, Fisher DE: Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell. 2002, 109: 707-18.PubMedGoogle Scholar
  146. Goding CR: Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 2000, 14: 1712-1728.PubMedGoogle Scholar
  147. Thomson JA, Murphy K, Baker E, Sutherland GR, Parsons PG, Sturm RA, Thomson F: The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene. 1995, 11: 691-700.PubMedGoogle Scholar
  148. Hemesath TJ, Price ER, Takemoto C, Badalian T, Fisher DE: MAP kinase links the transcription factor Microphthalmia to c-Kit signalling in melanocytes. Nature. 1998, 391: 298-301.PubMedGoogle Scholar
  149. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP, Ballotti R: Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol. 1998, 142: 827-835.PubMed CentralPubMedGoogle Scholar
  150. Bertolotto C, Bille K, Ortonne JP, Ballotti R: Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CATGTG motifs surrounding the TATA box: implication of the microphthalmiagene product. Cell Sci. 1996, 134: 747-755.Google Scholar
  151. Polakis P: Wnt signaling and cancer. Genes Dev. 2000, 14: 1837-1851.PubMedGoogle Scholar
  152. Dorsky RI, Moon RT, Raible DW: Control of neural crest cell fate by the Wnt signalling pathway. Nature. 1998, 396: 370-373.PubMedGoogle Scholar
  153. Dorsky RI, Moon RT, Raible DW: Environmental signals and cell fate specification in premigratory neural crest. Bioessays. 2000, 22: 708-716.PubMedGoogle Scholar
  154. Peifer M, Polakis P: Wnt signaling in oncogenesis and embryogenesisa look outside the nucleus. Science. 2000, 287: 1606-1609.PubMedGoogle Scholar
  155. You L, He B, Xu Z, Uematsu K, Mazieres J, Fujii N, Mikami I, Reguart N, McIntosh JK, Kashani-Sabet M, McCormick F, Jablons DM: An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res. 2004, 64: 5385-5389.PubMedGoogle Scholar
  156. Kashani-Sabet M, Range J, Torabian S, Nosrati M, Simko J, Jablons DM, Moore DH, Haqq C, Miller III, Sagebiel RW: A multi-marker assay to distinguish malignant melanomas from benign nevi. Proc Natl Acad Sci USA. 2009, 106: 6268-6272.PubMed CentralPubMedGoogle Scholar
  157. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P: Stabilization of β-catenin by genetic defects in melanoma cell lines. Science. 1997, 275: 1790-1792.PubMedGoogle Scholar
  158. Rimm DL, Caca K, Hu G, Harrison FB, Fearon ER: Frequent nuclear/cytoplasmic localization of β-catenin without exon 3 mutations in malignant melanoma. Am J Path. 1999, 154: 325-329.PubMed CentralPubMedGoogle Scholar
  159. Morgan T: The theory of the gene. Am Nat. 1917, 51: 513-544.Google Scholar
  160. Robbins J, Blondel BJ, Gallahan D, Callahan R: Mouse mammary tumor gene int-3: a member of the Notch gene family transforms mammary epithelial cells. J Virol. 1992, 66: 2594-2599.PubMed CentralPubMedGoogle Scholar
  161. Jhappan C, Gallahan D, Stahle C, Chu E, Smith GH, Merlino G, Callahan R: Expression of an activated Notch-related int-3 trangene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev. 1992, 6: 345-355.PubMedGoogle Scholar
  162. Lardelli M, Williams R, Lendahl U: Notch-related genes in animal development. Int J Dev Biol. 1995, 39: 769-780.PubMedGoogle Scholar
  163. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ, Ray WJ, Kopan R: A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000, 5: 197-206.PubMedGoogle Scholar
  164. Brou C, Logeat F, Gupta N, Bessia C, LeBail O, Doedens JR, Cumano A, Roux P, Black RA, Israël A: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000, 5: 207-216.PubMedGoogle Scholar
  165. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A: Signalling downstream of activated mammalian Notch. Nature. 1995, 377: 355-358.PubMedGoogle Scholar
  166. Lai EC: Protein degradation: four E3s for the notch pathway. Curr Biol. 2002, 12: R74-R78.PubMedGoogle Scholar
  167. Lai EC: Notch signaling: control of cell communication and cell fate. Development. 2004, 131: 965-973.PubMedGoogle Scholar
  168. Artavanis-Tsakonas S, Rand MD, Lake RJ: Notch signaling: cell fate control and signal integration in development. Science. 1999, 284: 770-776.PubMedGoogle Scholar
  169. Jeffries S, Capobianco AJ: Neoplastic transformation by Notch requires nuclear localization. Mol Cell Biol. 2000, 20: 3928-3941.PubMed CentralPubMedGoogle Scholar
  170. Allman D, Punt JA, Izon DJ, Aster JC, Pear WS: An invitation to T and more: notch signaling in lymphopoiesis. Cell. 2002, 109: S1-S11.PubMedGoogle Scholar
  171. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991, 66: 649-61.PubMedGoogle Scholar
  172. Sriuranpong V, Borges MW, Ravi RK, Arnold DR, Nelkin BD, Baylin SB, Ball DW: Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res. 2001, 61: 3200-5.PubMedGoogle Scholar
  173. Gestblom C, Grynfeld A, Ora I, Ortoft E, Larsson C, Axelson H, Sandstedt B, Cserjesi P, Olson EN, Påhlman S: The basic helix-loop-helix transcription factor dHAND, a marker gene for the developing human sympathetic nervous system, is expressed in both high- and low-stage neuroblastomas. Lab Invest. 1999, 79: 67-79.PubMedGoogle Scholar
  174. Grynfeld A, Påhlman S, Axelson H: Induced neuroblastoma cell differentiation, associated with transient HES-1 activity and reduced HASH-1 expression, is inhibited by Notch1. Int J Cancer. 2000, 88: 401-10.PubMedGoogle Scholar
  175. Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S: Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA. 1995, 92: 6414-8.PubMed CentralPubMedGoogle Scholar
  176. Talora C, Sgroi DC, Crum CP, Dotto GP: Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev. 2002, 16: 2252-63.PubMed CentralPubMedGoogle Scholar
  177. Shou J, Ross S, Koeppen H, de Sauvage FJ, Gao WQ: Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer Res. 2001, 61: 7291-7.PubMedGoogle Scholar
  178. Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, van Noort M, Hui CC, Clevers H, Dotto GP, Radtke F: Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003, 33: 416-21.PubMedGoogle Scholar
  179. Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, Metzger D, Chambon P, Miele L, Aguet M, Radtke F, Dotto GP: Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001, 20: 3427-36.PubMed CentralPubMedGoogle Scholar
  180. Lowell S, Jones P, Le Roux I, Dunne J, Watt FM: Stimulation of human epidermal differentiation by δ-notch signalling at the boundaries of stem-cell clusters. Curr Biol. 2000, 10: 491-500.PubMedGoogle Scholar
  181. Hoek K, Rimm DL, Williams KR, Zhao H, Ariyan S, Lin A, Kluger HM, Berger AJ, Cheng E, Trombetta ES, Wu T, Niinobe M, Yoshikawa K, Hannigan GE, Halaban R: Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas. Cancer Res. 2004, 64: 5270-82.PubMedGoogle Scholar
  182. Massi D, Tarantini F, Franchi A, Paglierani M, Di Serio C, Pellerito S, Leoncini G, Cirino G, Geppetti P, Santucci M: Evidence for differential expression of Notch receptors and their ligands in melanocytic nevi and cutaneous malignant melanoma. Modern Pathology. 2006, 19: 246-259.PubMedGoogle Scholar
  183. Pinnix CC, Lee JT, Liu ZJ, McDaid R, Balint K, Beverly LJ, Brafford PA, Xiao M, Himes B, Zabierowski SE, Yashiro-Ohtani Y, Nathanson KL, Bengston A, Pollock PM, Weeraratna AT, Nickoloff BJ, Pear WS, Capobianco AJ, Herlyn M: Active Notch1 confers a transformed phenotype to primary human melanocytes. Cancer Res. 2009, 69: 5312-5320.PubMed CentralPubMedGoogle Scholar
  184. Kang DE, Soriano S, Xia X, Eberhart CG, De Strooper B, Zheng H, Koo EH: Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell. 2002, 110: 751-762.PubMedGoogle Scholar
  185. Li G, Satyamoorthy K, Herlyn M: N-cadherin-mediated intercellular interactions promote survival and migration f melanoma cells. Cancer Res. 2001, 61: 3819-3825.PubMedGoogle Scholar
  186. Cheng P, Zlobin A, Volgina V, Gottipati S, Osborne B, Simel EJ, Miele L, Gabrilovich DI: Notch-1 regulates NF-kB activity in hemopoietic progenitor cells. J Immunol. 2001, 167: 4458-4467.PubMedGoogle Scholar
  187. Shin HM, Minter LM, Cho OH, Gottipati S, Fauq AH, Golde TE, Sonenshein GE, Osborne BA: Notch1 augments Nf-kB activity by facilitating its nuclear retention. EMBO J. 2006, 25: 129-138.PubMed CentralPubMedGoogle Scholar
  188. Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, Rudolf M, Siziopikou K, Kast WM, Miele L: Activation of Notch1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Na Med. 2002, 8: 979-986.Google Scholar
  189. Kiaris H, Politi K, Grimm LM, Szabolcs M, Fisher P, Efstratiadis A, Artavanis-Tsakonas S: Modulation of Notch signaling elicits signature tumors and inhibits hras1-induced oncogenesis in the mouse mammary epithelium. Am J Pathol. 2004, 165: 695-705.PubMed CentralPubMedGoogle Scholar
  190. Grimm EA, Ellerhorst J, Tang CH, Ekmekcioglu S: Constitutive intracellular production of iNOS and NO in human melanoma: possible role in regulation of growth and resistance to apoptosis. Nitric Oxide. 2008, 19: 133-137.PubMed CentralPubMedGoogle Scholar
  191. Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ, Mak TW, Taniguchi T, Vilcek J: Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science. 1994, 263: 1612-1615.PubMedGoogle Scholar
  192. Martin E, Nathan C, Xie QW: Role of interferon regulatory factor 1 in induction of nitric oxide synthase. J Exp Med. 1994, 180: 977-984.PubMedGoogle Scholar
  193. Xie QW, Kashiwabara Y, Nathan C: Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994, 269: 4705-4708.PubMedGoogle Scholar
  194. Adcock IM, Brown CR, Kwon O, Barnes PJ: Oxidative stress induces NF kappa B DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun. 1994, 199: 1518-1524.PubMedGoogle Scholar
  195. Meyskens FL, McNulty SE, Buckmeier JA, Tohidian NB, Spillane TJ, Kahlon RS, Gonzalez RI: Aberrant redox regulation in human metastatic melanoma cells compared to normal melanocytes. Free Radic Biol Med. 2001, 31: 799-808.PubMedGoogle Scholar
  196. Zhang J, Peng B, Chen X: Expression of nuclear factor kappaB, inducible nitric oxide syntheses, and vascular endothelial growth tactor in adenoid cystic carcinoma of salivary glands: correlations with the angiogenesis and clinical outcome. Clin Cancer Res. 2005, 11: 7334-7343.PubMedGoogle Scholar
  197. MacMicking J, Xie QW, Nathan C: Nitric oxide and macrophage function. Rev Immunol. 1997, 15: 323-350.Google Scholar
  198. Bredt DS: Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res. 1999, 31: 577-596.PubMedGoogle Scholar
  199. Geller DA, Billiar TR: Molecular biology of nitric oxide synthases. Cancer Metastasis Rev. 1998, 17: 7-23.PubMedGoogle Scholar
  200. Massi D, Franchi A, Sardi I, Magnelli L, Paglierani M, Borgognoni L, Maria Reali U, Santucci M: Inducible nitric oxide synthase expression in benign and malignant cutaneous melanocytic lesions. J Pathol. 2001, 194: 194-200.PubMedGoogle Scholar
  201. Xie K, Huang S, Dong Z, Juang SH, Gutman M, Xie QW, Nathan C, Fidler IJ: Transfection with the inducible nitric oxide syntheses gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med. 1995, 181: 1333-1343.PubMedGoogle Scholar
  202. Xie K, Wang Y, Huang S, Xu L, Bielenberg D, Salas T, McConkey DJ, Jiang W, Fidler IJ: Nitric oxide-mediated apoptosis of K-1735 melanoma cells is associated with downregulation of Bcl-2. Oncogene. 1997, 15 (7): 771-9.PubMedGoogle Scholar
  203. Messmer UK, Ankarcrona M, Nicotera P, Brüne B: p53 expression in nitric oxide induced apoptosis. FEBS Lett. 1994, 355: 23-26.PubMedGoogle Scholar
  204. Rudin CM, Thompson CB: Apoptosis and disease: regulation and clinical relevance of programmed cell death. Annu Rev Med. 1997, 48: 267-281.PubMedGoogle Scholar
  205. Williams GT, Smith CA: Molecular regulation of apoptosis: genetic controls on cell death. Cell. 1993, 74: 777-779.PubMedGoogle Scholar
  206. Krammer PH: The CD95(APO-1/Fas)/CD95L system. Toxicol Lett. 1998, 102-103: 131-137.PubMedGoogle Scholar
  207. Reed JC: Dysregulation of apoptosis in cancer. J Clin Oncol. 1999, 17: 2941-2953.PubMedGoogle Scholar
  208. Frisch SM, Screaton RA: Anoikis mechanisms. Curr Opin Cell Biol. 2001, 13: 555-562.PubMedGoogle Scholar
  209. Brune B, Mohr S, Messmer UK: Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways. Rev Physiol Biochem Pharmacol. 1996, 127: 1-30.PubMedGoogle Scholar
  210. Tschugguel W, Pustelnik T, Lass H, Mildner M, Weninger W, Schneeberger C, Jansen B, Tschachler E, Waldhör T, Huber JC, Pehamberger H: Inducible nitric oxide synthase (iNOS) expression may predict distant metastasis in human melanoma. Br J Cancer. 1999, 79: 1609-1612.PubMed CentralPubMedGoogle Scholar
  211. Ahmed B, Oord Van den JJ: Expression of the inducible isoform of nitric oxide synthase in pigment cell lesions of the skin. Br J Dermatol. 2000, 142: 432-40.PubMedGoogle Scholar
  212. Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA: Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res. 2000, 6: 4768-75.PubMedGoogle Scholar
  213. Ahmed B, Oord Van Den JJ: Expression of the neuronal isoform of nitric oxide synthase (nNOS) and its inhibitor, protein inhibitor of nNOS, in pigment cell lesions of the skin. Br J Dermatol. 1999, 141: 12-19.PubMedGoogle Scholar
  214. Tang CH, Grimm EA: Depletion of endogenous nitric oxide enhances cisplatin-induced apoptosis in a p53-dependent manner in melanoma cell lines. J Biol Chem. 2004, 279: 288-98.PubMedGoogle Scholar
  215. Bevona C, Goggins W, Quinn T: Cutaneous melanomas associated with nevi. Arch Dermatol. 2003, 139: 1620-1624.PubMedGoogle Scholar
  216. Rasheed S, Mao Z, Chan JMC, Chan LS: Is melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells. J Transl Med. 2005, 3: 14-PubMed CentralPubMedGoogle Scholar
  217. Zabierowski SE, Herlyn M: Melanoma stem cells: the dark seed of melanoma. J Clin Oncol. 2008, 26: 2890-2894.PubMedGoogle Scholar

Copyright

© Palmieri et al; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.